びdoubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT MATHEMATICS(TAMIL

ENGLISH)

QUADRILATERALS

Illustrative Examples

1. ABCD is a parallelogram and $\angle A=60^{\circ}$. Find
the remaining angles.

- Watch Video Solution

2. In a parallelogram $A B C D, \angle D A B=40^{\circ}$ find the other angles of the parallelogram.

- Watch Video Solution

3. Two adjacent sides of a parallelogram are 4.5
cm and 3 cm . Find its perimeter.
4. In a parallelogram $A B C D$, the bisectors of the consecutive angles angleA and angleB intersect at P . Show that $\angle A P B=90^{\circ}$.

D Watch Video Solution

5. In a triangle $A B C, A D$ is the median drawn on the side $B C$ is produced to E such that $A D=E D$ prove that ABEC is a parallelogram.
6. In $\triangle A B C, D, E$ and F are the midpoints of sides $A B, B C$ and $C A$ respectively. Show that
$\Delta A B C$ is divided into four congruent triangles, when the three midpoints are joined to each other. ($\triangle D E F$ is called medial triangle)

D Watch Video Solution

7. I, m and n are three parallel lines intersected by the transversals p and q at A, B, C and D, E, F such that they make equal intercepts $A B$ and $B C$ on the transversal p. Show that the intercepts

DE and EF on q are also equal.

(D) Watch Video Solution

8. In the Fig. $A D$ and $B E$ are medians of
$\triangle A B C$ and $B E \| D F$.
Prove
that
$C F=\frac{1}{4} A C$.

D Watch Video Solution

9. $A B C$ is a triangle and through A, B, C lines are drawn parallel to $B C, C A$ and $A B$ respectively intersecting at P, Q and R. Prove
that the perimeter of $\triangle P Q R$ is double the perimeter of $\triangle A B C$.

D Watch Video Solution

Think Discuss And Write

1. Show that the diagonals of a square are equal and right bisectors of each other.

D Watch Video Solution
2. Show that the diagonals of a rhombus divide it four congruent triangles.

D Watch Video Solution

Exercise 81

1. State whether the statements are True or False.
(i) Every parallelogram is a trapezium ()
2. State whether the statements are True or False.
(ii) All parallelograms are quadrilaterals ()

D Watch Video Solution

3. State whether the statements are True or False.
(iii) All trapeziums are parallelograms ()
4. State whether the statements are True or False.
(iv) A square is a rhombus ()

Watch Video Solution

5. State whether the statements are True or False.
(v) Every rhombus is a square ()

D Watch Video Solution
6. State whether the statements are True or False.
(vi) All parallelograms are rectangles

D Watch Video Solution

7. The four angles of a quadrilateral are in the
ratio 1: 2:3:4. Find the measure of each angle of the quadrilateral.
8. $A B C D$ is a rectangle $A C$ is diagonal. Find the nature of $\triangle A C D$. Give reasons.

D Watch Video Solution

Exercise 82

1. In the adjacent figure $A B C D$ is a parallelogram
$A B E F$ is a rectangle show that
$\triangle A F D \cong \triangle B E C$.
2. Show that the diagonals of a rhombus divide it four congruent triangles.

D Watch Video Solution

3. If a quadrilateral ABCD , the bisector of $\angle C \angle D$ intersect at O .

Prove that $\angle C O D=\frac{1}{2}(\angle A+\angle B)$

D Watch Video Solution

1. The opposite angles of a parallelogram are
$(3 x-2)^{\circ}$ and $(x+48)^{\circ}$.
Find the measure of each angle of the parallelogram.

- Watch Video Solution

2. Find the measure of all the angles of a parallelogram, if one angle is 24° less than the twice of the smallest angle.
3. In the adjacent figure $A B C D$ is a parallelogram and E is the midpoint of the side $B C$. If $D E$ and $A B$ are produced to meet at F, show that $A F=2 A B$.

- Watch Video Solution

4. In the adjacent figure $A B C D$ is a parallelogram
P and Q are the midpoints of sides $A B$ and $D C$
respectively. Show that PBCQ is also a parallelogram.

D Watch Video Solution

5. $A B C$ is an isosceles triangle in which
$A B=A C . A D \quad$ bisects exterior angle
$Q A C$ and $C D \| B A$ as shown in the figure.
Show that
(i) $\angle D A C=\angle B C A$
(ii) $A B C D$ is a parallelogram

(D) Watch Video Solution

6. $A B C D$ is a parallelogram $A P$ and $C Q$ are perpendiculars drawn from vertices A and C on diagonal BD (see figure) show that
(i) $\triangle A P B \cong \triangle C Q D$
(ii) $A P=C Q$
7.

$\Delta^{s} A B C$ and $, A B \| D E, B C=E F$ and $B C \| E F$
. Vertices A, B and C are joined to vertices D, E and F respectively (see figure). Show that
(i) ABED is a parallelogram
(ii) BCFE is a parallelogram
(iii) $\mathrm{AC}=\mathrm{DF}$
(iv) $\triangle A B C \cong \triangle D E F$
(Watch Video Solution
8. $A B C D$ is a parallelogram. $A C$ and $B D$ are the diagonals intersect at $\mathrm{O} . \mathrm{P}$ and Q are the points of tri section of the diagonal BD. Prove that
$C Q \| A P$ and also AC bisects PQ (see figure).

D Watch Video Solution

9. $A B C D$ is a square. E, F, G and H are the mid
points of $A B, B C, C D$ and $D A$ respectively.
Such that $A E=B F=C G=D H$. Prove that

EFGH is a square.

(D) Watch Video Solution

Exercise 84

1. $A B C$ is a triangle . D is a point of $A B$ such that
$A D=\frac{1}{4} A B$ and E is a point on $A C$ such that
$A E=\frac{1}{4} A C$. If $D E=2 \mathrm{~cm}$ find BC .
2. $A B C D$ is quadrilateral E, F, G and H are the midpoints of $A B, B C, C D$ and $D A$ respectively. Prove that EFGH is a parallelogram.

D Watch Video Solution

3. Show that the figure formed by joining the midpoints of sides of a rhombus successively is a rectangle.
4. In a parallelogram $A B C D, E$ and F are the midpoints of the sides $A B$ and $D C$ respectively.

Show that the line segments AF and EC trisect the diagonal BD.

D Watch Video Solution

5. Show that the line segments joining the midpoints of the opposite sides of a quadrilateral and bisect each other.
6. $A B C$ is a triangle right angled at C. A line through the midpoint M of hypotenuse $A B$ and Parallel to BC intersects AC at D. Show that
(i) D is the midpoint of $A C$
(ii) $M D \perp A C$
(iii) $C M=M A=\frac{1}{2} A B$.
