©゙doubtnut

India's Number 1 Education App

MATHS

NCERT - FULL MARKS MATHEMATICS(TAMIL)

SETS, RELATIONS AND FUNCTIONS

Example

1. Find the number of subsets of A if $A=\{(x: x=4 n+1,2 \leq n \leq 5, n \in \mathbb{N})\}$.

- View Text Solution

2. In a survey of 5000 persons in a town, it was found that 45% of the persons know language A, 25% know language $B, 10 \%$ know Language C, 5% know Language A and B, 4\% know Languages Band C, and 4\% now

Languages A and C. If 3% of the persons know all the three Languages find the number of persons who knows only Language A.

- View Text Solution

3. Prove that
$\left(\left(A \cup B^{\prime} \cup C\right) \cap\left(A \cap B^{\prime} \cap C^{\prime}\right)\right) \cup\left(\left(A \cup B \cup C^{\prime}\right) \cap\left(B^{\prime} \cap C^{\prime \prime}\right)\right)=B^{\prime}$

- View Text Solution

4. If $X=\{1,2,3 \ldots \ldots \ldots \ldots .10\}$ and $A=\{1,2,3,4,5\}$ find the number of sets $B \subseteq X$ such that $A-B=\{4\}$.

- View Text Solution

5. If A and B are two sets so that $n(B-A)=2 n(A-B)=4 n(A \cap B)$ and if $n(A \cup B)=14$, then find $n(\mathscr{P}(A))$.
6. Two sets have m and k elements. If the total number of subsets of the first set is 112 more than that of the second set, find the values of m and k.

- View Text Solution

7. If $n(A)=10$ and $n(A \cap B)=3$ find $n\left((A \cap B)^{\prime} \cap A\right)$

- View Text Solution

8. If $A=\{1,2,3,4\}$ and $B=\{3,4,5,6\} \quad$ find $n((A \cup B) \times(A \cap B) \times(A \Delta B))$.

- View Text Solution

9. If $\mathscr{P}(A)$ denotes the power set of A then find $n(\mathscr{P}(\mathscr{P}(\mathscr{P}(\emptyset))))$.
10. Check the relation $R=\{(1,1),(2,2),(3,3), \ldots \ldots . .,(n, n)\}$ defined on the set $S=\{1,2,3, \ldots \ldots \ldots \ldots, n\}$ for the three basic realtions.

- View Text Solution

11. Let $S=\{1,2,3\}$ and $\rho=\{(1,1),(1,2),(2,2),(1,3),(3,1)\}$.
(i) If ρ refelxive? If not, state the reason and write the minimum set of ordered pairs to be included to ρ so as to make it reflexive.
(ii) Is ρ symmetric ? If not, state the reason, write minimum number of ordered pairs to be included to ρ so as to make it symmetric and write minimum number of ordered pairs to be deleted from ρ so as to make it symmetric.
(iii) Is ρ transitive? If not, state the reason, write minimum number of ordered pairs to be included to ρ so as to make it transitive and write minimum number of ordered pairs to be deleted from ρ so as tomake it transitive.
(iv) Is ρ an equivalence relation? If not, write the minimum ordered pairs to be included to ρ so as to make it an equivalence relation.

- View Text Solution

12. Let $A=\{0,1,2,3\}$. Construct relations on A of the following types: not reflexive, not symmetric, not transitive

- View Text Solution

13. Let $A=\{0,1,2,3\}$. Construct relations on A of the following types: not reflexive, not symmetric, transitive

- View Text Solution

14. Let $A=\{0,1,2,3\}$. Construct relations on A of the following types: not reflexive, symmetric, not transitive
15. Let $A=\{0,1,2,3\}$. Construct relations on A of the following types: not reflexive, symmetric, transitive

- View Text Solution

16. Let $A=\{0,1,2,3\}$. Construct relations on A of the following types: reflexive, not symmetric, not transitive

- View Text Solution

17. Let $A=\{0,1,2,3\}$. Construct relations on A of the following types:
reflexive, not symmetric, transitive
18. Let $A=\{0,1,2,3\}$. Construct relations on A of the following types: reflexive, symmetric, non transitive

- View Text Solution

19. In the set \mathbb{Z} of integers, define $m \mathrm{Rn}$ if $\mathrm{m}-\mathrm{n}$ is multiple of 12 . Prove that R is an equivalence relation.

- View Text Solution

20. Check whether of the following functions are one to one and onto.
(i) $f: \mathbb{N} \rightarrow N$ defined $f(n)=n+2$
(ii) $f: \mathbb{N} \cup\{-1,0\} \rightarrow \mathbb{N}$ defined by $f(n)=n+2$.

- View Text Solution

21. Check the following functions for one to oneness and onto ness and ontoness.
(i) $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=n^{2}$
(ii) $f: R \rightarrow R$ defined by $f(n)=n^{2}$

- View Text Solution

22. Check whether the following for one to one ness and ontoness.
(i) $f: \mathbb{R} \rightarrow R$ defined by $f(x)=\frac{1}{x}$
(ii) $f: R-\{0\} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$

- View Text Solution

23. If $f: \mathbb{R}-\{-1,1\} \rightarrow \mathbb{R}$ is defined by $f(x)=\frac{x}{x^{2}-1}$, verify whether f is one to one or nto.

- View Text Solution

24. If $f: R \rightarrow R$ is defined as $f(x)=2 x^{2}-1$ find the pre images of 17,4 and -2 .

- View Text Solution

25. If $f:[-2,2] \rightarrow B$ is given by $f(x)=2 x^{3}$ then find B so that f is onto.

- View Text Solution

26. Check whether the function $f(x)=x|x|$ defined on [$-2,2$] is one to one or not. If it is one to one find a suitable co domain so that the function becomes a bijection.

- View Text Solution

27. Find the largest possible domain for the real valued function f defined by $f(x)=\sqrt{x^{2}-5 x+6}$

View Text Solution

28. Find the domain of $f(x)=\frac{1}{1-2 \cos x}$

- View Text Solution

29. Find the range of the function $f(x)=\frac{1}{1-3 \cos x}$

- View Text Solution

30. Find the largest possible domain for the real valued function given by
$f(x)=\frac{\sqrt{9-x^{2}}}{\sqrt{x^{2}-1}}$

- View Text Solution

31. Let $f=\{(1,2),(3,4),(2,2)\}$ and $g=\{(2,1),(3,1),(4,2)\}$ Find $g \circ$ f and fog .

View Text Solution

32. Let $f=\{(1,4),(2,5),(3,5)\}$ and $g=\{(4,1),(5,2),(6,4)\}$. Find g of. Can you find fog ?

- View Text Solution

33. Let f and g be the two functions from \mathbb{R} to \mathbb{R} defined by $f(x)=3 x-4$ and $g(x)=x^{2}+3$. Find g of and $\mathrm{f} \circ \mathrm{g}$

- View Text Solution

34. Show that the statement.
if f and g of are one to one then g is one to one is not true.
35. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=2 x-|x|$ and $g(x)=2 x+|x|$. Find fog .

- View Text Solution

36. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=2 x-3$ prove that f is a bijection and find its inverse.

- View Text Solution

Exercise 11

1. Write the following in roster form.
$\left\{x \in N: x^{2}<121\right.$ and x is a prime $\}$

- View Text Solution

2. Write the following in roster form. the set of all positive roots of the equation $(x-1)(x+1)\left(x^{2}-1\right)=0$

View Text Solution

3. Write the following in roster form.
$\{x \in \mathbb{N}: 4 \times 9<53\}$

- View Text Solution

4. Write the following in roster form.
$\left\{x: \frac{x-4}{x+2}=3, x \in \mathbb{R}-\{-2\}\right\}$

- View Text Solution

5. Write the set $\{-1,1\}$ is set builder form.
6. State whether the following sets are finite or infinite.
$\{x \in \mathbb{N}: x$ is an even prime number $\}$

D View Text Solution

7. State whether the following sets are finite or infinite.
$\{x \in \mathbb{N}: x$ is an odd prime number $\}$

- View Text Solution

8. State whether the following sets are finite or infinite.
$\{x \in \mathbb{Z}: \mathrm{x}$ is even and less than 10$\}$

- View Text Solution

9. State whether the following sets are finite or infinite.
$\{x \in \mathbb{R}: \mathrm{x}$ is rational number $\}$

- View Text Solution

10. State whether the following sets are finite or infinite.
$\{x \in \mathbb{N}: \mathrm{x}$ is rational number $\}$

- View Text Solution

11. Jusify the trueness of the statement

An element of a set can never be a subset of itself.

- View Text Solution

12. If $n(A \cap B)=3$ and $n(A \cup B)=10$, then find $n(\mathscr{P}(A \Delta B))$
13. For a set $A, A \times A$ contains 16 elements and two of its elements are $(1,3)$ and $(0,2)$. Find the element of A.

- View Text Solution

14. Let A and B be two such that $n(A)=3$ and $n(B)=2$. If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find A and B where x, y, z are distinct elements.

- View Text Solution

15. If $A \times A$ has 16 elements $A=\{(a, b) \in A \times A: a<\},(-1,2)$ and $(0,1)$ are two elements of S, then find the remaining element of S.

- View Text Solution

1. Discuss the following relations for reflexivity, symmetricity and transitivity:

The relation R defined on the set of all positive integers by $m R n$ if m divides n.

- View Text Solution

2. Discuss the following relations for reflexivity, symmetricity and transitivity:

Let P denote the set of al straight lines in a plane. The relation R defined by I Rnm if I is perpendicular to m .

- View Text Solution

3. Discuss the following relations for reflexivity, symmetricity and transitivity:
let A be the consisting of all the members of a family. The relation R defined by a Rb if a is not a sister of b .

- View Text Solution

4. Discuss the following relations for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the female members of a family. The relation R defined by $a \mathrm{Rb}$ if a is not a sister of b.

- View Text Solution

5. Discuss the following relations for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation R defined by x Ry if $x+2 y=1$.

- View Text Solution

6. Let $X=\{a, b, c, d\}$ and $R=\{(a, a),(b, b),(a, c)\}$. Write doen the minimum number of ordered pairs to be included to R to make it
(i) reflexive (ii) symmetric (iii) transitive (iv) equivalence

- View Text Solution

7. Let $A=\{a, b, c\}$ and $R=\{(a, a),(b, b),(a, c)\}$. Write down the minimum number of ordered pairs to be included to R to make it
(i) reflexive (ii) symmetric (iii) transitive (iv) equivalence

- View Text Solution

8. On the set of natural numbers let R be the relation defined by a $R b$ if $2 a+3 b=30$. Write down the relation by listing all the pairs. Check whether it is
(i) reflexive (ii) symmetric (iii) transitive (iv) equivalence

- View Text Solution

9. On the set of natural numbers let R be the relatioin defined by aRb if $a+b \leq 6$. Write down the relation by listing all the pairs. Check whether it is
(i) reflexive (ii) symmetric (iii) transitive (iv) equivalence

D View Text Solution

10. Let $A=\{a, b, c\}$. What is the equivalence relation of smallest cardinality of A? What is the equivalence relationi of largest cardinality on A?

- View Text Solution

Exercise 13

1. Suppose that 120 are studying in 4 sections of eleventh standard in a school. Let A denote the set of students and B denote the set of the sections. Define a relation from A to B as x related to y if the student x
belongs to the section y. Is this relation a function? What can you say about the inverse relatioin. Explain your answer.

- View Text Solution

2. Write the values of at $-4,1,-2,7,0$ if
$f(x)= \begin{cases}-x+4 & \text { if }-\infty<x \leq-3 \\ x+4 & \text { if- }-3<x<-2 \\ x^{2}-x & \text { if }-2 \leq x<1 \\ x-x^{2} & \text { if1 } \leq x<7 \\ 0 & \text { otherwise }\end{cases}$

D View Text Solution

3. Write the vaues of f at $-3,5,2-1,0$ if
$f(x)= \begin{cases}x^{2}+x-5 & \text { if } x \in(-\infty, 0) \\ x^{2}+3 x-2 & \text { if } x \in(3, \infty) \\ x^{2} & \text { if } x \in(0,2) \\ x^{2}-3 & \text { otherwise }\end{cases}$

- View Text Solution

4. State whether the following relations are functions or not. If it is a function check for one to oneness and ontoness. If it is not a function, state why?
(i) If $A=\{a, b, c\}$ and $f=\{(a, c),(b, c),(c, b)\},(f: A \rightarrow A)$
(ii) If $X=\{x, y, z)$ and $f=\{(x, y),(x, z),(z, x)\},(f: X \rightarrow X)$

- View Text Solution

5. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$. Give a function from $A \rightarrow B$ for each of the following:
(i) neither one to one nor onto

D View Text Solution

6. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$. Give a function from $A \rightarrow B$ for each of the following: not one to one but onto.
7. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$. Give a function from $A \rightarrow B$ for each of the following: one to one but not onto.

- View Text Solution

8. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$. Give a function from $A \rightarrow B$ for each of the following:
one to one and onto.

- View Text Solution

9. Find the domain of $\frac{1}{1-2 \sin x}$

- View Text Solution

10. Find the largest possible domain of the real valued function $f(x)=\frac{\sqrt{4-x^{2}}}{\sqrt{x^{2}-9}}$

- View Text Solution

11. Find the range of the function $\frac{1}{2 \cos x-1}$

- View Text Solution

12. Show that the relation $x y=-2$ is a function for a suitable domain.

Find the domain and the range of the function.

- View Text Solution

13. If $f, g: R \rightarrow R$ are defined by $f(x)=|x|+x$ and $g(x)=|x|-x$ find g of f and $\mathrm{f} \circ \mathrm{g}$.
14. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3 x-5$, prove that f is a bijection and find its inverse.

- View Text Solution

15. The weight of the muscles of a man is a function of his body weight x and can be expressed as $W(x)=0.35 x$. Determine the domain of this function.

- View Text Solution

16. The total cost of airfare on a given route is comporised of the base cost C and the fuel surcharge S in rupee. Both C and S are functions of the mileagem, $C(m)=0.4 m+5$ and $S(m)=0.03 m$. Determine a function for the total cost of a ticket in terms of the mileage and find the airfare for flying 1600 miles.
17. A sales person whose annual earnings can be represented by the function $A(x)=30,000+0.4 x$, where x is the rupee value of the merchandise he sells. His on is also in sales and his earnings are represented by the function $S(x)=25,000+0.05 x$. Find $(A+S)(x)$ and determine the total family income if they each sell Rupees $1,50,00,000$ worth of merchandise.

- View Text Solution

18. The function for exchanging Americal dollars for Singapore Dollar on a given day isd $f(x)=1.23 x$, where x represents the number of Americal dollars. On the same day the function for exchanging Singapore Dollar to Indian Rupee is $g(y)=50.50 y$, where y represents the number of Singapore dollars. Write a function which will give exchange rate of Americal dollars in terms of Indian rupee.
19. The owner of a small restaurant can prepare a particular meal at a csot of Rupees 100 . He estimates that if the menu price of the meal is x rupees, then the number of customers who will order that meal at that price in an evening is given by the function $D(x)=200-x$. Express his day revenue, total cost and profit on this meal as functions of x .

D View Text Solution

20. The formula for converting from Fahrenheit to Celsius temperautee is $y=\frac{5 x}{9}-\frac{160}{9}$. Find the inverse of this function and determine whether the invere is also a function.

- View Text Solution

21. A simple cipher takes a number and codes it, using the function $f(x)=3 x-4$. Find the inverse of this function determine whether the inverse is also a function and verify the symmetrical property about the line $\mathrm{y}=\mathrm{x}$ (by drawing the lines).

- View Text Solution

Exercise 15

1. If $A=\left\{(x, y): y=e^{x}, x \in R\right\}$ and $B=\left\{(x, y),: y=e^{-x}, x \in R\right\}$ then $n(A \cap B)$ is
A. Infinity
B. 0
C. 1
D. 2

Answer: C

- View Text Solution

2.

If
$A=\{(x, y): y=\sin x, x \in R\}$
and
$B=\{(x, y): y=\cos x, x \in R\}$ then $A \cap B$ contains
A. no element
B. infinitely many elements
C. only one element
D. cannot be determined.

Answer: B

- View Text Solution

3. The relation R defined on a set $A=\{0,-1,1,2\}$ by x Ry if $\left|x^{2}+y^{2}\right| \leq 2$ then which one of the following is true?
A. $R=\{(0,0),(0,-1),(0,1),(-1,0),(-1,1),(1,2),(1,0)\}$
B. $R^{-1}=\{(0,0),(0,-1),(0,1),(-1,0),(1,0)\}$
C. Domain of R is $\{0,-1,1,2\}$
D. Range of R is $\{0,-1,1\}$
4. If $f(x)=|x-2|+|x+2|, x \in R$ then
A. $f(x)=\left\{\begin{array}{lll}-2 x & \text { If } & x \in(-\infty,-2] \\ 4 & \text { if } & x \in(-2,2] \\ 2 x & \text { if } & x \in(2, \infty)\end{array}\right.$
B. $f(x)=\left\{\begin{array}{lll}2 x & \text { If } & x \in(-\infty,-2] \\ 4 & \text { if } & x \in(-2,2] \\ -2 x & \text { if } & x \in(2, \infty)\end{array}\right.$
C. $f(x)=\left\{\begin{array}{lll}-2 x & \text { If } & x \in(-\infty,-2] \\ -4 x & \text { if } & x \in(-2,2] \\ -2 x & \text { if } & x \in(2, \infty)\end{array}\right.$
D. $f(x)=\left\{\begin{array}{lll}-2 x & \text { If } & x \in(-\infty,-2] \\ 2 x & \text { if } & x \in(-2,2] \\ 2 x & \text { if } & x \in(2, \infty)\end{array}\right.$

Answer: A

View Text Solution

5. Let \mathbb{R} be the set of all real numbers. Consider the following subsets of the plane $\mathbb{R} \times \mathbb{R}$
$T=\{(x, y): x-y$ is an integer $\}$
Then which of the following is true?
A. T is an equivalence relation but S is not an equivalence relation.
B. Neither S nor T is an equivalence relation
C. Both S and T are equivalence relatioin
D. S is an equivalence relation but T is not an equivalcne relation.

Answer: A

- View Text Solution

6. Let A and B be subsets of the universal set \mathbb{N}, the set of natural numbers. Then $A^{\prime} \cup\left[(A \cap B) \cup B^{\prime}\right]$ is
A. A
B. A^{\prime}
C. B
D. \mathbb{N}

Answer: D

- View Text Solution

7. The number of students who take both the subjects Mathematics and Chemistry is 70 . This represents 10% of the enrollment in Mathematics and 14% of the enrollment in Chemistry. The number of student take at least one of these two subjects is
A. 1120
B. 1130
C. 1100
D. insufficient data

Answer: B

8. If $n((A \times B) \cap(A \times C))=8$ and $n(B \cap C)=2$ then $n(A)$ is
A. 6
B. 4
C. 8
D. 16

Answer: B

D View Text Solution

9. If $n(A)=2$ and $n(B \cup C)=3$ then $n[(A \times B) \cup(A \times C)]$ is
A. 2^{3}
B. 3^{2}
C. 6
D. 5

Answer: C

D View Text Solution

10. If two sets A and B have 17 elements in common, then the number of elements common to the set $A \times B$ and $B \times A$ is
A. 2^{17}
B. 17^{2}
C. 34
D. insufficient data

Answer: B

D View Text Solution

11. For non empty set A and B if $A \subset B$ then $(A \times B) \cap(B \times A)$ is equal to
A. $A \cap B$
B. $A \times A$
C. $B \times B$
D. None of these

Answer: B

- View Text Solution

12. The number of relations on a set containing 3 elements is
A. 9
B. 81
C. 512
D. 1024

Answer: C

13. Let R be the universal relation on a set X with more than one element. Then R is
A. not reflexive
B. not symmetric
C. transitive
D. None of the above

Answer: C

- View Text Solution

14. Let $X=\{1,2,3,4\}$
and
$R=\{(1,1),(1,2),(1,3),(2,2),(3,3),(2,1),(3,1),(1,4),(4,1)\}$.

Then R is
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: B

- View Text Solution

15. The range of the function $\frac{1}{1-\sin x}$ is
A. $(-\infty,-1) \cup\left(\frac{1}{3}, \infty\right)$
B. $\left(-1, \frac{1}{3}\right)$
C. $\left[-1, \frac{1}{3}\right]$
D. $(-\infty,-1] \cup\left[\frac{1}{3}, \infty\right)$

Answer: D

16. The range of the function $f(x)=\mid\lfloor(x)-x \mid, x \in \mathbb{R}$ is
A. $[0,1]$
B. $[0, \infty)$
C. $[0,1)$
D. $(0,1)$

Answer: C

- View Text Solution

17. The rule $f(x)=x^{2}$ is a bijectionif the domain and the co domain are given by
A. \mathbb{R}, \mathbb{R}
B. $\mathbb{R},(0, \infty)$
C. $(, \infty), \mathbb{R}$
D. $[0, \infty),[0, \infty)$

Answer: D

D View Text Solution

18. The number of constant functions from a set containing m elements to a set containing n elements is
A. $m n$
B. m
C. n
D. $m+n$

Answer: C

- View Text Solution

19. The function $f:[0,2 \pi] \rightarrow[-1,1]$ defined by $f(x)=\sin \mathrm{x}$ is
A. one to one
B. onto
C. bijection
D. cannot be determined.

Answer: B

- View Text Solution

20. If the function $f:[-3,3] \rightarrow S$ definced by $f(x)=x^{2}$ is onto then S is
A. $[-9,9]$
B. \mathbb{R}
C. $[-3,3]$
D. $[0,9]$
21. Let $X=\{1,2,3,4\}, Y=\{a, b, c, d\}$ and
$f=\{(1, a),(4, b),(2, c),(3, d),(2, d)\}$. Then f is
A. an one to one function
B. an onto function
C. a function which is not one to one
D. not a function

Answer: D

- View Text Solution

22. The inverse of $f(x)= \begin{cases}x & \text { if } x<1 \\ x^{2} & \text { if } 1 \leq x \leq 4 \text { is } \\ 8 \sqrt{x} & \text { if } x>4\end{cases}$
A. $f^{-1}(x)=\left\{\begin{array}{lll}x & \text { if } & x<1 \\ \sqrt{x} & \text { if } & 1 \leq x \leq 16 \\ \frac{x^{2}}{64} & \text { if } & x>16\end{array}\right.$
B. $f^{-1}(x)=\left\{\begin{array}{lll}-x & \text { if } & x<1 \\ \sqrt{x} & \text { if } & 1 \leq x \leq 16 \\ \frac{x^{2}}{64} & \text { if } & x>16\end{array}\right.$
C. $f^{-1}(x)=\left\{\begin{array}{lll}x^{2} & \text { if } & x<1 \\ \sqrt{x} & \text { if } & 1 \leq x \leq 16 \\ \frac{x^{2}}{64} & \text { if } & x>16\end{array}\right.$
D. $f^{-1}(x)=\left\{\begin{array}{lll}2 x & \text { if } & x<1 \\ \sqrt{x} & \text { if } & 1 \leq x \leq 16 \\ \frac{x^{2}}{8} & \text { if } & x>16\end{array}\right.$

Answer: A

23. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=1-|x|$. Then the range of f is
A. \mathbb{R}
B. $(1, \infty)$
C. $(-1, \infty)$
D. $(-\infty, 1]$
24. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=\sin x+\cos x$ is
A. an odd function
B. neither an odd function nor an even function
C. an even function
D. both odd function and even function.

Answer: B

- View Text Solution

25. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by
$f(x)=\frac{\left(x^{2}+\cos x\right)\left(1+x^{4}\right)}{(x-\sin x)\left(2 x-x^{3}\right)}+e^{-|x|}$ is
A. an odd function
B. neither an odd function nor an even function
C. an even function
D. both odd function and even function.

Answer: C

View Text Solution

