©゙’doubtnut

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

KINEMATICS

Example

1. Two vectors \vec{A} and \vec{B} of magnitude 5 units
and 7 units respectively make an angle 60°
with each other as shown below. Find the
magnitude of the resultant vector and its direction with respect to the vector $\mathrm{G} \vec{A}$.

D View Text Solution

2. Two vectors \vec{A} and \vec{B} of magnitude 5 units
and 7 units make an angle 60° with each other. Find the magnitude of the difference
vector $\vec{A}-\vec{B}$ and its direction with respect to the vector \vec{A}.

- View Text Solution

3. What are the unit vectors along the negative x -direction, negative y -direction, and negative z - direction?

D View Text Solution
4. Two vectors \vec{A} and \vec{B} are given in the component form as $\vec{A}=5 \hat{i}+7 \hat{j}-4 \hat{k}$ and $\vec{B}=6 \hat{i}+3 \hat{j}+2 \hat{k}$.
$\vec{A}+\vec{B}, \vec{B}+\vec{A}, \vec{A}-\vec{B}, \vec{B}-\vec{A}$

- View Text Solution

5. Given the vector $\vec{A}=2 \hat{i}+3 \hat{j}$, what is $3 \vec{A}$?

D View Text Solution

6. A vector \vec{A} is is given as in the following

Figure. Find $4 \vec{A}$ and $-4 \vec{A}$

D View Text Solution

7. Given two vectors $\vec{A}=2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{B}=\hat{i}+3 \hat{j}+6 \hat{k}$, Find the product $\vec{A} \cdot \vec{B}$, and the magnitudes of \vec{A} and \vec{B}. What is the angle between them?
8. Check whether the following vectors are orthogonal.
(i) $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=4 \hat{i}-5 \hat{j}$
(ii) $\vec{C}=5 \hat{i}+2 \hat{j}$ and $\vec{D}=2 \hat{i}-5 \hat{j}$

D View Text Solution
9. Two vectors are given as $\vec{r}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{F}=3 \hat{i}-2 \hat{j}+4 \hat{k}$. Find the resultant vector $\vec{\tau}=\vec{r} \times \vec{F}$
10. Compare the components for the following
vector equations
$\vec{F}=m \vec{a}$ Here m is positive number
(b) $\vec{P}=0$

D View Text Solution

11. Determine the value of the T from the given
vector equation.
$5 \hat{j}-T \hat{j}=6 \hat{j}+3 T \hat{j}$

D View Text Solution
12. Compare the components of vector equation $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=\vec{F}_{4}$

- View Text Solution

13. Determine the position vectors for the following particles which are located at points

P, Q, R, S.

D View Text Solution

14. A person initially at rest starts to walk 2 m
towards north, then 1 m towards east, then 5
m towards south and then 3 m towards west.

What is the position vector of the person at the end of the trip?

D View Text Solution

15. Assume your school is located 2 km away
from your home. In the morning you are going
to school and in the evening you come back
home. In this entire trip what is the distance travelled and the displacement covered?
16. An athlete covers 3 rounds on a circular track of radius 50 m . Calculate the total distance and displacement travelled by him.

D View Text Solution

17. Calculate the displacement vector for a particle moving from a point P to Q as shown below. Calculate the magnitude of

displacement.

D View Text Solution

18. Consider the function $y=x^{2}$. Calculate the derivative $\frac{d y}{d x}$ using the concept of limit.
19. Find the derivative with respect to t, of the
function $x=A_{0}+A_{1} t+A_{2} t^{2}$ where A_{0}, A_{1} and A_{2} are constants.

- View Text Solution

20. Consider an object travelling in a semicircular path from point O to point P in 5 second, as is shown in the Figure. Calculate
the average velocity and average speed.

D View Text Solution
21. The position vector of a particle is given
$\vec{r}=2 t \hat{i}+3 \hat{j}-5 \hat{k}$.

Calculate the velocity and speed of the particle at any instant t
22. The position vector of a particle is given
$\vec{r}=2 t \hat{i}+3 \hat{j}-5 \hat{k}$.

Calculate the velocity and speed of the particle at time $t=2 \mathrm{~s}$

D View Text Solution

23. The velocity of three particles A, B, C are given below. Which particle travels at the greatest speed?
$\overrightarrow{v_{A}}=3 \hat{i}-5 \hat{j}+2 \hat{k}$
$\overrightarrow{v_{B}}=\hat{i}+2 \hat{j}+3 \hat{k}$
$\overrightarrow{v_{C}}=5 \hat{i}+3 \hat{j}+4 \hat{k}$

D View Text Solution

24. Two cars are travelling with respective velocities $\vec{v}_{1}=10 \mathrm{~ms}^{-1}$ along east and $\vec{v}_{2}=10 \mathrm{~ms}^{-1}$ along west. What are the speeds of the cars?
25. Consider two masses of 10 g and 1 kg moving with the same speed $10 \mathrm{~ms}^{-1}$.

Calculate the magnitude of the momentum.

D View Text Solution

26. A particle moves along the x-axis in such a way that its coordinates x varies with time ' t ' according to the equation $x=2-5 t+6 t^{2}$. What is the initial velocity of the particle?
27. Suppose two cars A and B are moving with uniform velocities with respect to ground along parallel tracks and in the same direction.

Let the velocities of A and B be $35 k m h^{-1}$ due east and $40 \mathrm{kmh}^{-1}$ due east respectively.

What is the relative velocity of car B with

- View Text Solution

28. Suppose two trains A and B are moving with uniform velocities along parallel tracks but in opposite directions. Let the velocity of
train A be $40 \mathrm{kmh}^{-1}$ due east and that of train
B be $40 \mathrm{kmh}^{-1}$ due west. Calculate the relative velocities of the trains

D View Text Solution

29. Consider two trains A and B moving along parallel tracks with the same velocity in the
same direction. Let the velocity of each train be $50 \mathrm{kmh}^{-1}$ due east. Calculate the relative velocities of the trains.
30. How long will a boy sitting near the window of a train travelling at $36 \mathrm{~km}^{-1}$ see a train passing by in the opposite direction with a speed of $18 \mathrm{kmh}^{-1}$. The length of the slowmoving train is 90 m .

D View Text Solution

31. A swimmer's speed in the direction of flow of a river is $12 \mathrm{kmh}^{-1}$. Against the direction of
flow of the river the swimmer's speed is
$6 \mathrm{kmh}^{-1}$. Calculate the swimmer's speed in
still water and the velocity of the river flow.

D View Text Solution

32. A velocity-time graph is given for a particle
moving in x direction, as below
Velocity

Describe the motion qualitatively in the interval 0 to 55 s .

D View Text Solution

33. A velocity-time graph is given for a particle moving in x direction, as below

Find the distance and displacement travelled from 0 s to 40 s .

D View Text Solution

34. A velocity-time graph is given for a particle moving in x direction, as below

Find the acceleration at $t=5 \mathrm{~s}$ and at $\mathrm{t}=20 \mathrm{~s}$

- View Text Solution

35. If the position vector of the particle is given by $\vec{r}=3 t^{2} \hat{i}+5 t \hat{j}+4 \hat{k}$, Find the

The velocity of the particle at $\mathrm{t}=3 \mathrm{~s}$

- View Text Solution

36. If the position vector of the particle is given by $\vec{r}=3 t^{2} \hat{i}+5 t \hat{j}+4 \hat{k}$, Find the Speed of the particle at $\mathrm{t}=3 \mathrm{~s}$
37. If the position vector of the particle is given by $\vec{r}=3 t^{2} \hat{i}+5 t \hat{j}+4 \hat{k}$, Find the acceleration of the particle at time $t=3 \mathrm{~s}$

D View Text Solution

38. An object is thrown vertically downward.

What is the acceleration experienced by the object?
39. An iron ball and a feather are both falling from a height of 10 m .

What are the time taken by the iron ball and feather to reach the ground?
b) What are the velocities of iron ball and feather when they reach the ground? (Ignore air resistance and take $g=10 m s^{-2}$)

D View Text Solution

40. A train was moving at the rate of $54 \mathrm{kmh}^{-1}$ when brakes were applied. It came to rest within a distance of 225 m. Calculate the retardation produced in the train.

D View Text Solution

41. Suppose an object is thrown with initial
speed $10 \mathrm{~ms}^{-1}$ at an angle $\pi / 4$ with the horizontal, what is the range covered?

Suppose the same object is thrown similarly in
the Moon, will there be any change in the range? If yes, what is the change? (The acceleration due to gravity in the Moon $\left.g_{\text {moon }}=\frac{1}{6} g\right)$

D View Text Solution

42. In the cricket game, a batsman strikes the
ball such that it moves with the speed $30 \mathrm{~ms}^{-1}$ at an angle 30° with the horizontal
as shown in the figure. The boundary line of
the cricket ground is located at a distance of

75 m from the batsman? Will the ball go for a six? (Neglect the air resistance and take acceleration due to gravity $g=10 m s^{-2}$).

View Text Solution

43. Calculate the angle θ subtended by the two adjacent wooden spokes of a bullock cart wheel is shown in the figure. Express the angle in both radian and degree.

44. A particle moves in a circle of radius 10 m .

Its linear speed is given by vt 3 where t is in second and v is in $m s^{-1}$.
(a) Find the centripetal and tangential acceleration at $\mathrm{t}=2 \mathrm{~s}$.
(b) Calculate the angle between the resultant acceleration and the radius vector.
45. A particle is in circular motion with an acceleration $\alpha=0.2$ rads $^{-2}$.
(a) What is the angular displacement made by the particle after 5 s ?
(b) What is the angular velocity at $t=5 \mathrm{~s}$?.

Assume the initial angular velocity is zero.

D View Text Solution

Exercise I Multi Choice Question

1. Which one of the following Cartesian coordinate systems is not followed in physics?

B.

Answer: D

D View Text Solution

2. Identify the unit vector in the following.
A. $\hat{i}+\hat{j}$
B. $\frac{\hat{i}}{\sqrt{2}}$
C. $\hat{k}-\frac{\hat{j}}{\sqrt{2}}$
D. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
3. Which one of the following physical quantities cannot be represented by a scalar?
A. Mass
B. length
C. momentum
D. magnitude of acceleration

Answer: C
4. Two objects of masses m_{1} and m_{2} fall from
the heights h_{1} and h_{2} respectively. Th e ratio of the magnitude of their momenta when they hit the ground is

> A. $\sqrt{\frac{h_{1}}{h_{2}}}$
> B. $\sqrt{\frac{m_{1} h_{1}}{m_{2} h_{2}}}$
> C. $\frac{m_{1}}{m_{2}} \sqrt{\frac{h_{1}}{h_{2}}}$
> D. $\frac{m_{1}}{m_{2}}$

Answer: C

D View Text Solution

5. If a particle has negative velocity and negative acceleration, its speed
A. increases
B. decreases
C. remains same
D. zero

Answer: A

D View Text Solution

6. If the velocity is $\Longrightarrow 2 \hat{i}+t^{2} \hat{j}-9 \hat{k}$, then
the magnitude of acceleration at $t=0.5 \mathrm{~s}$ is
A. $1 m s^{-1}$
B. $2 m s^{-2}$
C. zero
D. $-1 m s^{-2}$

Answer: A

D View Text Solution

7. If an object is dropped from the top of a building and it reaches the ground at $t=4 \mathrm{~s}$, then the height of the building is (ignoring air resistance) $\left(g=9.8 m s^{-2}\right)$
A. 77.3 m
B. 78.4 m
C. 80.5 m

D. 79.2 m

Answer: B

D View Text Solution

8. A ball is projected vertically upwards with a
velocity v. It comes back to ground in time t.

Which v-t graph shows the motion correctly?

Answer: C
9. If one object is dropped vertically downward
and another object is thrown horizontally
from the same height, then the ratio of vertical distance covered by both objects at any instant t is
A. 1
B. 2
C. 4
D. 0.5

Answer: A
10. A ball is dropped from some height towards the ground. Which one of the following represents the correct motion of the ball?

Answer: A

D View Text Solution

11. If a particle executes uniform circular motion in the xy plane in clock wise direction,
then the angular velocity is in
A. $+y$ direction
B. $+z$ direction
C. $-z$ direction
D. $-x$ direction

Answer: C

D View Text Solution
12. If a particle executes uniform circular motion, choose the correct statement
A. The velocity and speed are constant.
B. The acceleration and speed are constant
C. The velocity and acceleration are
constant
D. The
speed
and magnitude of acceleration are constant.

Answer: D
13. If an object is thrown vertically up with the initial speed u from the ground, then the time taken by the object to return back to ground is

$$
\begin{aligned}
& \text { A. } \frac{u^{2}}{2 g} \\
& \text { B. } \frac{u^{2}}{g} \\
& \text { C. } \frac{u}{2 g} \\
& \text { D. } \frac{2 u}{g}
\end{aligned}
$$

Answer: d

D View Text Solution

14. Two objects are projected at angles 30° and 60° respectively with respect to the horizontal direction. The range of two objects are denoted as $R_{30^{\circ}}$ and $R_{60^{\circ}}$. Choose the correct relation from the following

$$
\text { A. } R_{30^{\circ}}=R_{60^{\circ}}
$$

$$
\text { B. } R_{30^{\circ}}=4 R_{60^{\circ}}
$$

> C. $R_{30^{\circ}}=\frac{R_{60^{\circ}}}{2}$
> D. $R_{30^{\circ}}=2 R_{60^{\circ}}$

Answer: a

D View Text Solution

15. An object is dropped in an unknown planet
from height 50 m , it reaches the ground in 2 s
. The acceleration due to gravity in this unknown planet is
A. $g=20 m s^{-2}$
B. $g=25 m s^{-2}$
C. $g=15 m s^{-2}$
D. $g=30 m s^{-2}$

Answer: b

- View Text Solution

Exercise Iv Exercises

1. The position vectors particle has length 1 m and makes 30° with the x-axis. What are the lengths of the x and y components of the position vector?

D View Text Solution

2. A particle has its position moved from $\vec{r}_{1}=3 \hat{i}+4 \hat{j}$ to $\vec{r}_{2}=\hat{i}+2 \hat{j}$. Calculate the displacement vector $(\Delta \vec{r})$ and draw the
\vec{r}_{1}, \vec{r}_{2} and $\Delta \vec{r}$ vector in a two dimensional
Cartesian coordinate system.

- View Text Solution

3. Calculate the average velocity of the particle whose position vector changes from
$\vec{r}_{1}=5 \hat{i}+6 \hat{j}$ to $\vec{r}_{2}=2 \hat{i}+3 \hat{j}$ in a time 5
second.
4. Convert the vector $\vec{r}=3 \hat{i}+3 \hat{j}$ into a unit vector.

D View Text Solution

5. What are the resultants of the vector product of two given vectors given by

$$
\vec{A}=4 \hat{i}-2 \hat{j}+\hat{k} \text { and } \vec{B}=5 \hat{i}+3 \hat{j}-4 \hat{k} ?
$$

D View Text Solution
6. An object at an angle such that the horizontal range is 4 times of the maximum height. What is the angle of projection of the object?

D View Text Solution

7. A particle is projected at an angle of $\theta \mathrm{T}$ with
respect to the horizontal direction. Match the
following for the above motion.
v_{x} - decreases and increases
(b) v_{y} - remains constant
(c) Acceleration - varies

Position vector - remains downward

D View Text Solution

8. A water fountain on the ground sprinkles
water all around it. If the speed of the water coming out of the fountain is v . Calculate the total area around the fountain that gets wet.
9. The resultant of two vectors A and B is perpendicular to vector A and its magnitude is equal to half of the magnitude of vector B.

Then the angle between A and B is
(a) 30°
(b) 45°
(c) 150° (d) 120°

- View Text Solution

10. Compare the components for the following
vector equations

$$
T \hat{j}-m g \hat{j}=m a \hat{j}=m a \hat{j}
$$

(b) $\vec{T}+\vec{F}=\vec{A}+\vec{B}$
(c) $\vec{T}-\vec{F}=\vec{A}-\vec{B}$ (d) $T \hat{j}+m g \hat{j}=m a \hat{j}$

D View Text Solution

11. Calculate the area of the triangle for which two of its sides are given by the vectors $\vec{A}=5 \hat{i}-3 \hat{j}, \vec{B}=4 \hat{i}+6 \hat{j}$

D View Text Solution

12. If Earth completes one revolution in

24 hours, what is the angular displacement made by Earth in one hour. Express your answer in both radian and degree.

D View Text Solution

13. A object is thrown with initial speed
$5 m s^{-1}$ with an angle of projection 30b. What
is the height and range reached by the particle?
14. If an object is thrown horizontally with an
initial speed $10 \mathrm{~ms}^{-1}$ from the top of a building of height 100 m . what is the horizontal distance covered by the particle?

D View Text Solution

15. An object is executing uniform circular motion with an angular speed of $\frac{\pi}{12}$ radian per second. At $t=0$ the object starts at an
angle $\theta=0$ What is the angular displacement of the particle aft er 4 s ?

D View Text Solution

16. Consider the x -axis as representing east,
the y-axis as north and z-axis as vertically upwards. Give the vector representing each of the following points.

5 m north east and 2 m up
17. Consider the x -axis as representing east, the y-axis as north and z-axis as vertically upwards. Give the vector representing each of the following points.

4 m south east and 3 m up

D View Text Solution

18. Consider the x -axis as representing east,
the y-axis as north and z-axis as vertically
upwards. Give the vector representing each of
the following points.

2 m north west and 4 m up

D View Text Solution

19. Th e Moon is orbiting the Earth approximately once in 27 days, what is the angle transversed by the Moon per day?

D View Text Solution
20. An object of mass m has angular acceleration $\alpha=0.2 \mathrm{rads}^{-2}$ What is the angular displacement covered by the object aft er 3 second? (Assume that the object started with angle zero with zero angular velocity).

