©゙’doubtnut

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

KINETIC THEORY OF GASES

Example

1. A football at $27^{\circ} C$ has 0.5 mole of air
molecules. Calculate the internal energy of air
in the ball.

- View Text Solution

2. A room contains oxygen and hydrogen molecules in the ratio $3: 1$. The temperature of the room is $27^{\circ} \mathrm{C}$. The molar mass of O_{2} is $32 \mathrm{~g} \mathrm{~mol}^{-1}$ and for $H_{2} 2 \mathrm{~g} \mathrm{~mol}^{-1}$. The value of gas constant R is $8.32 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
(a) rms speed of oxygen and hydron molecule
(b) Average kinetic energy per oxygen molecule and per hydrogen molecule
(c) Ratio of average kinetic energy of oxygen molecules and hydrogen molecules.
3. Ten particles are moving at the speed of
$2,3,4,5,5,5,6,6,7$ and $9 \mathrm{~ms}^{-1}$. Calculate rms speed, average speed and most probable speed.

D View Text Solution

4. Calculate the rms speed, average speed and the most probable speed of 1 mole of
hydrogen molecules at 300 K. Neglect the mass of electron.

D View Text Solution

5. Find the adiabatic exponent γ for mixture of μ_{1} moles of monoatomic gas and μ_{2} moles of a diatomic gas at normal temperature.

D View Text Solution
6. An oxygen molecule is travelling in air at

300 K and 1 atm , and the diameter of oxygen
molecule is $1.2 \times 10^{-10} \mathrm{~m}$. Calculate the mean
free path of oxygen molecule.

D View Text Solution

Evaluation Multiple Choice Questions

1. A particle of mass m is moving with speed u
in a direction which makes 60° with respect to
x axis. It undergoes elastic collision with the
wall. What is the change in momentum in x and y direction ?

A. $\Delta p_{x}=-\mathrm{mu}, \Delta p_{y}=0$
B. $\Delta p_{x}=-2 \mathrm{mu}, \Delta p_{y}=0$
C. $\Delta p_{x}=0, \Delta p_{y}=\mathrm{mu}$
D. $\Delta p_{x}=\mathrm{mu}, \Delta p_{y}=0$

Answer: A

D View Text Solution

2. A sample of ideal gas is at equilibrium which of the following quantity is zero?
A. rms speed
B. average speed

C. average velocity

D. most probable speed

Answer: C

D View Text Solution

3. An ideal gas is maintained at constant pressure. If the temperature of an ideal gas increases from 100 K to 1000 K then the rms speed of the gas molecules
A. increases by 5 times
B. increases by 10 times
C. remains same
D. increases by 7 times

Answer: B

D View Text Solution
4. Two identically sized rooms A and B are
connected by an open door. If the room A is air
conditioned such that its temperature is 4°
lesser than room B, which room has more air in it?
A. Room A
B. Room B
C. Both room has same air
D. Cannot be determined

Answer: A

D View Text Solution
5. The average translational kinetic energy of gas molecules depends on
A. number of moles and T
B. only on T
C. P and T
D. P only

Answer: A
(D) View Text Solution
6. If the internal energy of an ideal gas U and volume V are doubled then the pressure
A. doubles
B. remains same
C. halves
D. quadruples

Answer: B

- View Text Solution

7. The ratio $\gamma=\frac{C_{p}}{C_{v}}$ for a gas mixture consisting of 8 g of helium and 17 g of oxygen is
A. $23 / 15$
B. $15 / 23$
C. $27 / 11$
D. $17 / 27$

Answer: C

8. A container has one mole of monoatomic
ideal gas. Each molecule has f degrees of
freedom. What is the ratio of $\gamma=\frac{C_{p}}{C_{v}}$
A. f
B. $\frac{f}{2}$
C. $\frac{f}{f+2}$
D. $\frac{f+2}{f}$

Answer: D

9. If the temperature and pressure of a gas is
doubled the mean free path of the gas molecules
A. remains same
B. doubled
C. tripled
D. quadrapoled

Answer: A

D View Text Solution
10. Which of the following shows the correct relationship between the pressure and density of an ideal gas at constant temperature?
A.

C.

Answer: D

D View Text Solution

11. A sample of gas consists of μ_{1} moles of monoatomic molecules, μ_{2} moles of diatomic molecules and μ_{3} moles of linear triatomic molecules. The gas is kept at high
temperature. What is the total number of degrees of freedom?
A. $\left[3 \mu_{1}+7\left(\mu_{2}+\mu_{3}\right)\right] N_{A}$
B. $\left[3 \mu_{1}+7 \mu_{2}+6 \mu_{3}\right] N_{A}$
C. $\left[7 \mu_{1}+3\left(\mu_{2}+\mu_{3}\right)\right] N_{A}$
D. $\left[3 \mu_{1}+6\left(\mu_{2}+\mu_{3}\right)\right] N_{A}$

Answer: A

D View Text Solution
12. If S_{P} and S_{V} denote the specific heats of nitrogen gas per unit mass at constant pressure and constant volume respectively, then
A. $S_{P}-S_{V}=28 R$
B. $S_{P}-S_{V}=R / 28$
C. $S_{P}-S_{V}=R / 14$
D. $S_{P}-S_{V}=R$

Answer: B
13. Which of the following gases will have least rms speed at a given temperature ?
A. Hydrogen
B. Nitrogen
C. Oxygen
D. Carbon dioxide

Answer: D
14. For a given gas molecule at a fixed temperature, the area under the MaxwellBoltzmann distribution curve is equal to

$$
\begin{aligned}
& \text { A. } \frac{P V}{k T} \\
& \text { B. } \frac{k T}{P V} \\
& \text { C. } \frac{P}{N k T} \\
& \text { D. } P V
\end{aligned}
$$

Answer: A
15. The following graph represent the pressure versus number density for ideal gas at two different temperatures T_{1} and T_{2}. The graph implies

A. $T_{1}=T_{2}$
B. $T_{1}>T_{2}$
C. $T_{1}<T_{2}$
D. Cannot be determined

Answer: B

- View Text Solution

1. A fresh air is composed of nitrogen $N_{2}(78 \%)$ and oxygen $O_{2}(21 \%)$. Find the rms speed of N_{2} and O_{2} at $20^{\circ} \mathrm{C}$.

D View Text Solution

2. If the rms speed of methane gas in the jupiter's atmosphere is $471.8 \mathrm{~ms}^{-1}$, show that the surface temperature of jupiter is sub-zero.

3. Calculate the temperature at which the rms

 velocity of a gas triples its value at S.T.P.
- View Text Solution

4. A gas is at temperature $80^{\circ} \mathrm{C}$ and pressure $5 \times 10^{-10} \mathrm{Nm}^{-2}$. What is the number of molecules per m^{3} if boltzmann's constant is $1.38 \times 10^{-23} J K^{-1}$.
5. From kinetic theory of gases, show that Moon cannot have an atmosphere (Assume $k=1.38 \times 10^{-23} J K^{-1}$

Temperature

$$
\left.T=0^{\circ} C=273 K\right)
$$

D View Text Solution

6. If 10^{20} oxygen molecules per second strike
$4 \mathrm{~cm}^{2}$ of wall at an angle of 30° with the normal when moving at a speed of $2 \times 10^{3} m s^{-1}$, find the pressure exerted on the wall. (mass of 1 atom $=1.67 \times 10^{-27} \mathrm{~kg}$)

View Text Solution

7. Calculate the mean free path of air molecules at STP. The diameter of N_{2} and O_{2} is about $3 \times 10^{-10} m$

D View Text Solution

8. Estimate the total number of air molecules
in a room of capacity $25 m^{3}$ at a temperature of $27^{\circ} \mathrm{C}$.

