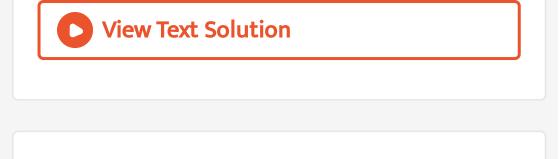


India's Number 1 Education App

PHYSICS


NCERT - FULL MARKS PHYSICS(TAMIL)

KINETIC THEORY OF GASES

1. A football at $27^{\circ}C$ has 0.5 mole of air molecules. Calculate the internal energy of air in the ball.

2. A room contains oxygen and hydrogen molecules in the ratio 3:1. The temperature of the room is $27^{\circ}C$. The molar mass of O_2 is $32g mol^{-1}$ and for H_22 g mol^{-1} . The value of gas constant R is 8.32 J $mol^{-1}K^{-1}$. (a) rms speed of oxygen and hydron molecule (b) Average kinetic energy per oxygen molecule and per hydrogen molecule (c) Ratio of average kinetic energy of oxygen molecules and hydrogen molecules.

3. Ten particles are moving at the speed of 2, 3, 4, 5, 5, 5, 6, 6, 7 and $9ms^{-1}$. Calculate rms speed, average speed and most probable speed.

View Text Solution

4. Calculate the rms speed, average speed and

the most probable speed of 1 mole of

hydrogen molecules at 300 K. Neglect the

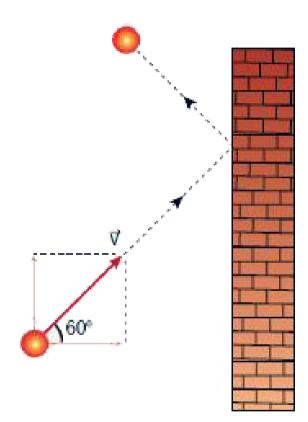
mass of electron.

5. Find the adiabatic exponent γ for mixture of

 μ_1 moles of monoatomic gas and μ_2 moles of

a diatomic gas at normal temperature.

6. An oxygen molecule is travelling in air at 300 K and 1 atm, and the diameter of oxygen molecule is $1.2 imes 10^{-10} m$. Calculate the mean


free path of oxygen molecule.

View Text Solution

Evaluation Multiple Choice Questions

1. A particle of mass m is moving with speed u in a direction which makes 60° with respect to

x axis. It undergoes elastic collision with the wall. What is the change in momentum in x and y direction ?

A. $\Delta p_x = -\mathrm{mu}, \Delta p_y = 0$

B. $\Delta p_x = -2\mathrm{mu}, \Delta p_y = 0$

C.
$$\Delta p_x=0,$$
 $\Delta p_y=$ mu

D.
$$\Delta p_x = {\sf mu}$$
 , $\Delta p_y = 0$

Answer: A

2. A sample of ideal gas is at equilibrium which

of the following quantity is zero?

A. rms speed

B. average speed

C. average velocity

D. most probable speed

Answer: C

3. An ideal gas is maintained at constant pressure. If the temperature of an ideal gas increases from 100K to 1000K then the rms speed of the gas molecules

A. increases by 5 times

B. increases by 10 times

C. remains same

D. increases by 7 times

Answer: B

D View Text Solution

4. Two identically sized rooms A and B are connected by an open door. If the room A is air conditioned such that its temperature is 4°

lesser than room B, which room has more air

in it?

A. Room A

B. Room B

C. Both room has same air

D. Cannot be determined

Answer: A

5. The average translational kinetic energy of

gas molecules depends on

A. number of moles and T

B. only on T

C. P and T

D. P only

Answer: A

6. If the internal energy of an ideal gas U and

volume V are doubled then the pressure

A. doubles

B. remains same

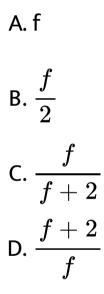
C. halves

D. quadruples

Answer: B

7. The ratio $\gamma = \frac{C_p}{C_v}$ for a gas mixture consisting of 8 g of helium and 17 g of oxygen is

A. 23/15


B. 15/23

 $\mathsf{C.}\,27\,/\,11$

D. 17/27

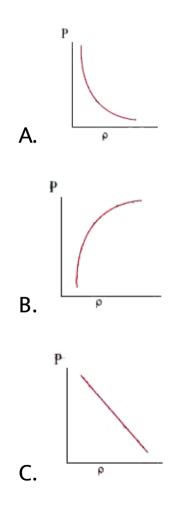
Answer: C

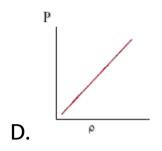
8. A container has one mole of monoatomic ideal gas. Each molecule has f degrees of freedom. What is the ratio of $\gamma = \frac{C_p}{C_v}$

Answer: D

9. If the temperature and pressure of a gas is doubled the mean free path of the gas molecules

A. remains same


B. doubled


C. tripled

D. quadrapoled

Answer: A

10. Which of the following shows the correct relationship between the pressure and density of an ideal gas at constant temperature?

Answer: D

11. A sample of gas consists of μ_1 moles of monoatomic molecules, μ_2 moles of diatomic molecules and μ_3 moles of linear triatomic molecules. The gas is kept at high

temperature. What is the total number of

degrees of freedom?

A.
$$[3\mu_1+7(\mu_2+\mu_3)]N_A$$

- B. $[3\mu_1 + 7\mu_2 + 6\mu_3]N_A$
- C. $[7\mu_1 + 3(\mu_2 + \mu_3)]N_A$

D.
$$[3\mu_1+6(\mu_2+\mu_3)]N_A$$

Answer: A

12. If S_P and S_V denote the specific heats of nitrogen gas per unit mass at constant pressure and constant volume respectively, then

A.
$$S_P-S_V=28R$$

B.
$$S_P-S_V=R/28$$

C.
$$S_P-S_V=R/14$$

D.
$$S_P-S_V=R$$

Answer: B

13. Which of the following gases will have least

rms speed at a given temperature ?

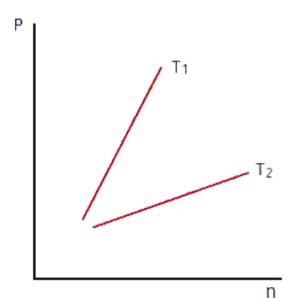
A. Hydrogen

B. Nitrogen

C. Oxygen

D. Carbon dioxide

Answer: D


14. For a given gas molecule at a fixed temperature, the area under the Maxwell-Boltzmann distribution curve is equal to

A.
$$\frac{PV}{kT}$$

B. $\frac{kT}{PV}$
C. $\frac{P}{NkT}$

D. PV

Answer: A

15. The following graph represent the pressure versus number density for ideal gas at two different temperatures T_1 and T_2 . The graph implies

A. $T_1=T_2$

B. $T_1 > T_2$

$\mathsf{C}.\,T_1 < T_2$

D. Cannot be determined

Answer: B

View Text Solution

Evaluation Numerical Problems

1. A fresh air is composed of nitrogen $N_2(78~\%)$ and oxygen $O_2(21~\%)$. Find the rms speed of N_2 and O_2 at 20° C.

2. If the rms speed of methane gas in the jupiter's atmosphere is $471.8ms^{-1}$, show that

the surface temperature of jupiter is sub-zero.

3. Calculate the temperature at which the rms

velocity of a gas triples its value at S.T.P.

4. A gas is at temperature $80^{\circ}C$ and pressure $5 \times 10^{-10} Nm^{-2}$. What is the number of molecules per m^3 if boltzmann's constant is $1.38 \times 10^{-23} JK^{-1}$.

5. From kinetic theory of gases, show that Moon cannot have an atmosphere (Assume $k=1.38 imes10^{-23}JK^{-1}$ Temperature $T=0^{\circ}C=273K$)

View Text Solution

6. If 10^{20} oxygen molecules per second strike $4cm^2$ of wall at an angle of 30° with the normal when moving at a speed of $2 \times 10^3 m s^{-1}$, find the pressure exerted on the wall. (mass of 1 atom= $1.67 \times 10^{-27} kg$)

7. Calculate the mean free path of air molecules at STP. The diameter of N_2 and O_2 is about $3 imes 10^{-10}m$

View Text Solution

8. Estimate the total number of air molecules in a room of capacity $25m^3$ at a temperature of $27^{\circ}C$.

