© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

NCERT - FULL MARKS PHYSICS(TAMIL)

NATURE OF PHYSICAL WORLD AND

MEASUREMENT

Example

1. From a point on the ground, the top of a
tree is seen to have an angle of elevation 60°.

The distance between the tree and a point is 50 m. Calculate the height of the tree?

D Watch Video Solution

2. The Moon subtends an angle of $1^{\circ} 55^{\prime}$ at
the base line equal to the diameter of the
Earth. What is the distance of the Moon from
the Earth? (Radius of the Earth is $6.4 \times 10^{6} \mathrm{~m}$)

D Watch Video Solution
3. A RADAR signal is beamed towards a planet and its echo is received 7 minutes later. If the distance between the planet and the Earth is $6.3 \times 10^{10} \mathrm{~m}$. Calculate the speed of the signal.

- Watch Video Solution

4. In a series of successive measurements in an experiment, the readings of the period of oscillation of a simple pendulum were found
to be $2.63 \mathrm{~s}, 2.56 \mathrm{~s}, 2.42 \mathrm{~s}, 2.71 \mathrm{~s}$ and 2.80 s .

Calculate

the mean value of the period of oscillation

D View Text Solution

5. In s series of successive measurements in an
experiment, the readings of the period of oscillation of a simple pendulum were found to be $2.63 s, 2.56 s, 2.42 s, 2.71 s$ and $2.80 s$.

Calculate

The mean absolute error in each

measurement.

D Watch Video Solution

6. In a series of successive measurements in an experiment, the readings of the period of oscillation of a simple pendulum were found to be $2.63 \mathrm{~s}, 2.56 \mathrm{~s}, 2.42 \mathrm{~s}, 2.71 \mathrm{~s}$ and 2.80 s .

Calculate

the mean absolute error

View Text Solution

7. In s series of successive measurements in an experiment, the readings of the period of oscillation of a simple pendulum were found to be $2.63 s, 2.56 s, 2.42 s, 2.71 s$ and $2.80 s$.

Calculate

The relative error.

D Watch Video Solution

8. In a series of successive measurements in an experiment, the readings of the period of
oscillation of a simple pendulum were found to be $2.63 \mathrm{~s}, 2.56 \mathrm{~s}, 2.42 \mathrm{~s}, 2.71 \mathrm{~s}$ and 2.80 s .

Calculate
the percentage error. Express the result in proper form.

D View Text Solution

9.

Two
resistances
$R_{1}=(100 \pm 3) \Omega, R_{2}=(150 \pm 2) \Omega, \quad$ are
connected in series. What is their equivalent resistance?

Watch Video Solution

10. The temperatures of two bodies measured

$$
\begin{aligned}
& \text { by } \begin{array}{c}
\text { a }
\end{array} \text { thermometer } \\
& t_{1}=(20+0.5)^{\circ} C, t_{2}=(50 \pm 0.5)^{\circ} C .
\end{aligned}
$$ are

Calculate the temperature difference and the error therein.

D View Text Solution

11. The length and breadth of a rectangle are (5.7 $\pm 0.1) \mathrm{cm}$ and (3.4 ± 0.2) cm respectively.

Calculate the area of the rectangle with error limits.

D View Text Solution

12. The voltage across a wire is $(100 \pm 5) \mathrm{V}$ and
the current passing through it is $(10 \pm 0.2) \mathrm{A}$.
Find the resistance of the wire.

D View Text Solution
13. A physical quantity x is given by $x=\frac{a^{2} b^{3}}{c \sqrt{d}}$.

If the percentage errors of measurement in a,
b, c and d are $4 \%, 2 \%, 3 \%$ and 1% respectively
then calculate the percentage error in the calculation of x.

D View Text Solution

14. State the number of significant figures in
the following
600800

View Text Solution

15. State the number of significant figures in
the following
5213.0

D View Text Solution

16. State the number of significant figures in
the following

400
17. State the number of significant figures in the following
$2.65 \times 10^{24} m$

D View Text Solution

18. State the number of significant figures in
the following
0.007
19. State the number of significant figures in the following 0.0006032

D View Text Solution
20. Round off the following numbers as indicated
18.35 up to 3 digits

- View Text Solution

21. Round off the following numbers as indicated
19.45 up to 3 digits

D View Text Solution
22. Round off the following numbers as indicated
101.55×10^{6} up to 4 digits

- View Text Solution

23. Round off the following numbers as indicated

248337 up to digits 3 digits

D View Text Solution

24. Round off the following numbers as indicated
12.653 up to 3 digits.
25. Convert 76 cm of mercury pressure into $N m^{-2}$ using the method of dimensions.

D View Text Solution

26. If the value of universal gravitational
constant in SI is $6.6 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ then
find its value in CGS System?

- View Text Solution

27. Check the correctness of the equation $\frac{1}{2} m v^{2}=$ mgh using dimensional analysis method.

D View Text Solution

28. Obtain an expression for the time period T
of a simple pendulum. The time period T depends on (i) mass ' m ' of the bob (ii) length ' l ' of the pendulum and (iii) acceleration due to
gravity g at the place where the pendulum is suspended. (Constant $k=2 \pi$) i.e

D View Text Solution

29. The force F acting on a body moving in a circular path depends on mass of the body
(m), velocity (v) and radius (r) of the circular path. Obtain the expression for the force by dimensional analysis method. (Take the value of $k=1$)

Exercise I Multiple Choice Questions

1. One of the combinations from the
fundamental physical constants is $\frac{h c}{G}$. Th e unit of this expression is
A. $k g^{2}$
B. m^{3}
C. s^{-1}
D. m

Answer: A

D View Text Solution

2. If the error in the measurement of radius is
2%, then the error in the determination of
volume of the sphere will be
A. 8%
B. 2%
C. 4%
D. 6%

Answer: D

D View Text Solution

3. If the length and time period of an oscillating pendulum have errors of 1% and 3% respectively then the error in measurement of acceleration due to gravity is
A. 4%
B. 5%
C. 6%

D. 7%

Answer: D

D View Text Solution

4. The length of a body is measured as 3.51 m ,
if the accuracy is 0.01 mm , then the percentage error in the measurement is
A. 351%
B. 1%
C. 0.28%
D. 0.035%

Answer: C

D View Text Solution
5. Which of the following has the highest number of signifi cant fi gures?
A. $0.007 m^{2}$
B. $2.64 \times 10^{24} \mathrm{~kg}$

C. $0.0006032 m^{2}$

D. 6.3200 J

Answer: D

D View Text Solution

6. If $\pi=3.14$, then the value of π^{2} is

A. 9.8596
B. 9.860
C. 9.86

D. 9.9

Answer: C

D View Text Solution

7. Which of the following pairs of physical

 quantities have same dimension?A. force and power
B. torque and energy
C. torque and power

D. force and torque

Answer: B

D View Text Solution

8. The dimensional formula of Planck's constant h is
A. $\left[M L^{2} T^{-1}\right]$
B. $\left[M L^{2} T^{-3}\right]$
C. $\left[M L T^{-1}\right]$
D. $\left[M L^{3} T^{-3}\right]$

Answer: A

D View Text Solution

9. The velocity of a particle v at an instant t is
given by $v=a t+b t^{2}$. Th e dimensions of b is
A. [L]
B. $\left[L T^{-1}\right]$
C. $\left[L T^{-2}\right]$
D. $\left[L T^{-3}\right]$

Answer: D

D View Text Solution

10. Th e dimensional formula for gravitational constant G is [Related to
A. $\left[M L^{3} T^{-2}\right]$
B. $\left[M^{-1} L^{3} T^{-2}\right]$
C. $\left[M^{-1} L^{-3} T^{-2}\right]$

$$
\text { D. }\left[M L^{-3} T^{2}\right]
$$

Answer: B

D View Text Solution

11. Th e density of a material in CGS system of
units is $4 \mathrm{gcm}^{-3}$. In a system of units in which
unit of length is 10 cm and unit of mass is 100
g, then the value of density of material will be
A. 0.04
B. 0.4
C. 40
D. 400

Answer: C

D View Text Solution

12. If the force is proportional to square of velocity, then the dimension of proportionality

constant is

A. $\left[M L T^{0}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{-2} T\right]$
D. $\left[M L^{-1} T^{0}\right]$

Answer: D

D View Text Solution

13. The dimension of $\left(\mu_{0} \varepsilon_{0}\right)^{-\frac{1}{2}}$ is
A. length

B. time

C. velocity
D. force

Answer: C

D View Text Solution

14. Planck's constant (h), speed of light in
vacuum (c) and Newton's gravitational
constant (G) are taken as three fundamental
constants. Which of the following
combinations of these has the dimension of

length?

> A. $\frac{\sqrt{h G}}{c^{\frac{3}{2}}}$
> B. $\frac{\sqrt{h G}}{c^{\frac{3}{2}}}$
> C. $\sqrt{\frac{h c}{G}}$
> D. $\sqrt{\frac{G c}{h^{\frac{3}{2}}}}$

Answer: A

D View Text Solution

15. A length-scale (I) depends on the permittivity (ε) of a dielectric material, Boltzmann constant $\left(k_{B}\right)$, the absolute temperature (T), the number per unit volume (n) of certain charged particles, and the charge (q) carried by each of the particles.

Which of the following expression for I is dimensionally correct?

$$
\begin{aligned}
& \text { A. } l=\sqrt{\frac{n q^{2}}{\varepsilon k_{B} T}} \\
& \text { B. } l=\sqrt{\frac{\varepsilon k_{B} T}{n q^{2}}}
\end{aligned}
$$

C. $l=\sqrt{\frac{q^{2}}{\varepsilon n^{\frac{2}{3}} k_{B} T}}$
D. $l=\sqrt{\frac{q^{2}}{\varepsilon k_{B} T}}$

Answer: B

- View Text Solution

Exercise li Short Answer Type Questions

1. Briefly explain the types of physical quantities.
2. How will you measure the diameter of the Moon using parallax method?

D View Text Solution

3. Write the rules for determining significant figures.
4. What are the limitations of dimensional analysis?

D View Text Solution
5. Define precision and accuracy. Explain with one example.
(D) View Text Solution

1. Explain the use of screw gauge and vernier caliper in measuring smaller distances.

- View Text Solution

2. Write a note on triangulation method and radar method to measure larger distances.

D View Text Solution

3. Explain in detail the various types of errors.
4. What do you mean by propagation of errors? Explain the propagation of errors in addition and multiplication.

- View Text Solution

5. Write short notes on the following.

Unit

D View Text Solution
6. Write short notes on the following.

Rounding - of

D View Text Solution
7. Write short notes on the following.

Dimensionless quantities

(D) View Text Solution
8. Explain the principle of homogeniety of dimensions. What are its uses? Give example.

D View Text Solution

Exercise lif Numerical Problems

1. In a submarine equipped with sonar, the time delay between the generation of a pulse
and its echo after reflection from an enemy
submarine is observed to be 80 s . If the speed
of sound in water is $1460 \mathrm{~ms}^{-1}$. What is the distance of enemy submarine?

D View Text Solution

2. The radius of the circle is 3.12 m . Calculate
the area of the circle with regard to significant figures.

D View Text Solution
3. Assuming that the frequency γ of a vibrating string may depend upon
applied force (F), prove that $\gamma \alpha \frac{1}{l} \sqrt{\frac{F}{m}}$ using dimensional analysis.

D View Text Solution

4. Assuming that the frequency γ of a
vibrating string may depend upon
length (A) , prove that $\gamma \alpha \frac{1}{l} \sqrt{\frac{F}{m}}$ using dimensional analysis.

D View Text Solution

5. Assuming that the frequency γ of a vibrating string may depend upon
mass per unit length (m), prove that
$\gamma \alpha \frac{1}{l} \sqrt{\frac{F}{m}}$ using dimensional analysis.

D View Text Solution

6. Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is
measured to be 35.72". Calculate the diameter of Jupiter.

D View Text Solution

7. The measurement value of length of a simple pendulum is 20 cm known with 2 mm accuracy. The time for 50 oscillations was measured to be 40 s within 1 s resolution.

Calculate the percentage accuracy in the determination of acceleration due to gravity ' g ' from the above measurement.

View Text Solution

Exercise V Conceptual Questions

1. Why is it convenient to express the distance of stars in terms of light year (or) parsec rather than in km ?

- View Text Solution

2. Show that a screw gauge of pitch 1 mm and

100 divisions is more precise than a vernier
caliper with 20 divisions on the sliding scale.

D View Text Solution

3. If humans were to settle on other planets which of the fundamental quantities will be in trouble? Why?

D View Text Solution

4. Having all units in atomic standards is more
useful. Explain.
5. Why dimensional methods are applicable only up to three quantities?

- View Text Solution

