びdoubtnut

MATHS

NCERT - NCERT MATHEMATICS(TAMIL

ENGLISH)

TRIANGLES

Examples

1. In the given Figure $A B$ and $C D$ are intersecting at ' O ',
$\mathrm{OA}=\mathrm{OB}$ and $\mathrm{OD}=\mathrm{OC}$. Show that (i) $\triangle A O D \cong \triangle B O C$
and (ii) $A D|\mid B C$.
2. $A B$ is a line segment and line I is its perpendicular bisector. If a point P lies on I, show that P is equidistant from A and B.

D Watch Video Solution

3. In the given figure, $A B \| D C$ and $A D \| B C$ show that
$\triangle \mathrm{ABC} \cong \triangle C D A$.
4. In the given figure, $A L \| D C, E$ is mid point of $B C$. Show that $\triangle E B L \cong \triangle E C D$.

D Watch Video Solution

5. Use the information given in the adjoining figure, to prove:
$(i) \Delta D B C \cong \triangle E A C$
$(i i) D C=E C$.

D Watch Video Solution
6. Line-segment $A B$ is parallel to another line-segment
CD. O is the mid-point of AD.

Show that (i) $\triangle A O B \cong \triangle D O C$ (ii) O is also the midpoint of $B C$.

- Watch Video Solution

7. In $\triangle A B C$, the bisector AD of A is perpendicular to side BC Show that $\mathrm{AB}=\mathrm{AC}$ and $\triangle A B C$ is isosceles.

- Watch Video Solution

8. In the adjacent figure, $A B=B C$ and $A C=C D$. Prove that: $\angle B A D: \angle A D B=3: 1$.

D Watch Video Solution

9. In the given figure, $A D$ is perpendicular to $B C$ and $E F \|$

BC , if $\angle E A B=\angle F A C$, show that triangles ABD and
ACD are congruent.
Also, find the values of x and y if

$$
A B=2 x+3, A C=3 y+1, B D=x \text { and } D C=y+1
$$

10. E and F are respectively the mid-points of equal sides AB and AC of $\triangle A B C$ (see figure)

Show that $B F=C E$.

D Watch Video Solution

11. In an isosceles triangle $A B C$ with $A B=A C, D$ and E are points on $B C$ such that $B E=C D$ (see figure) Show that
$A D=A E$
12. In quadrilateral $A B C D, A B=C D, B C=A D$ show that $\triangle A B C \cong \triangle C D A$ Consider $\triangle A B C$ and $\triangle C D A$

D Watch Video Solution

13. $A B$ is a line - segment. P and Q are points on either side of $A B$ such that each of them is equidistant from the points A and B (See Fig). Show that the line $P Q$ is the perpendicular bisector of $A B$.
14. P is a point equidistant from two lines I and m intersecting at point A (see figure). Show that the line

AP bisects the angle between them.

D Watch Video Solution

15. D is a point on side $B C \triangle A B C$ such that $A D=A C$ (see figure). Show that $A B>A D$.
16. There are some statements given below. Write whether they are true or false :

Two circle are always congruent.

D Watch Video Solution

2. There are some statements given below. Write whether they are true or false :

Two line segments of same length are always congruent.
3. There are some statements given below. Write whether they are true or false :

Two right angle triangles are sometimes congruent.

- Watch Video Solution

4. There are some statements given below. Write whether they are true or false :

Two equilateral triangles with their sides equal are always congruent.

- Watch Video Solution

5. Which minimum measurements do you require to check if the given figures are congruent:
i. Two rectangles
ii. Two rhombuses.

D Watch Video Solution

6. State whether the following triangles are congruent or not? Give reasons for your answer.

7. State whether the following triangles are congruent or not? Give reasons for your answer.

- Watch Video Solution

8. In the given figure, the point P bisects $A B$ and $D C$.

Prove that
$\triangle A P C \cong \triangle B P D$
`(NCERT_TAM_MAT_IX_C07_EO1_008_Q01.png" width="80\%">
9. In the adjacent figure $\triangle A B C$ and $\triangle D B C$ are two triangles such that $\overline{A B}=\overline{B D}$ and $\overline{A C}=\overline{C D}$. Show that $\triangle A B C \cong \triangle D B C$.

D Watch Video Solution

10. Now draw a triangle ABC and measure its sides. Find the sum of the sides $A B+B C, B C+A C$ and $A C+A B$, compare it with the length of the third side. What do you observe?

You will observe that $A B+B C>A C, B C+A C>A B$ and $A C$ $+A B>B C$.

Exercise 71

1. In quadrilateral $A C B D, A C=A D$ and $A B$ bisects
$\angle A$ Show that $\triangle A B C \cong \triangle A B D$.
What can you say about $B C$ and $B D$?

- Watch Video Solution

2. $A B C D$ is a quadrilateral in which $A D=B C$ and
$\angle D A B=\angle C B A$ Prove that
(i) $\triangle A B D \cong \triangle B A C$
(ii) $B D=A C$
(iii) $\angle A B D=\angle B A C$

D Watch Video Solution

3. $A D$ and $B C$ are equal and perpendiculars to a line segment $A B$. Show that $C D$ bisects $A B$.

D Watch Video Solution

4. I and m are two parallel lines intersected by another pair of parallel lines p and q. Show that

$\triangle A B C \cong \triangle C D A$.

D Watch Video Solution

$$
\begin{aligned}
& \text { 5. In } \begin{array}{cc}
\text { the } & \text { adjacent }
\end{array} \text { figure, } \\
& A C=A E, A B=A D \text { and } \angle B A D=\angle E A C \text {. Show }
\end{aligned}
$$

that $B C=D E$.

D Watch Video Solution

6. In right triangle $A B C$, right angle is at C, M is the midpoint of hypotenuse AB. C is joined to M and produced
to a point D such that $D M=C M$. Point D is joined to point B (see figure). Show that :
$(i) \Delta A M C \cong \triangle B M D$
(ii) $\angle D B C$ is a right angle
(iii) $\triangle D B C \cong \triangle A C B$ (iv) $C M=\frac{1}{2} A B$.

D Watch Video Solution

7. In the adjacent figure ABCD is a square and $\triangle A P B$ is an equilateral triangle. Prove that $\triangle A P D \cong \triangle B P C$.

D Watch Video Solution

8. In the adjacent figure $\triangle A B C$ is isosceles as
$\overline{A B}=\overline{A C}, \overline{B A}$ and $\overline{C A}$ are produced to Q and P such that $\overline{A Q}=\overline{A P}$. . Show that $\overline{P B}=\overline{Q C}$.

D Watch Video Solution

9. In the adjacent figure $\triangle A B C, D$ is the midpoint of BC. $D E \perp A B, D F \perp A C$ and $D E=D F$. Show that $\triangle B E D \cong \triangle C F D$.
10. If the bisector of an angle of a triangle also bisects the opposite side, prove that the triangle is isosceles.

- Watch Video Solution

11. In the given figure $A B C$ is a right triangle and right angled at B such that $\angle B C A=2 \angle B A C$.

Show that hypotenuse $A C=2 B C$.

- Watch Video Solution

1. In an isosceles triangle $A B C$, with $A B=A C$, the bisectors of $\angle B$ and $\angle C$ intersect each other at 0 . Join A to O. Show that:
(i) $\mathrm{OB}=\mathrm{OC}$ (ii) AO bisects $\angle A$

D Watch Video Solution

2. In $\triangle A B C$, the bisector AD of A is perpendicular to side BC Show that $\mathrm{AB}=\mathrm{AC}$ and $\triangle A B C$ is isosceles.
3. $A B C$ is an isosceles triangle in which altitudes $B D$ and
$C E$ are drawn to equal sides $A C$ and $A B$ respectively (see figure) Show that these altitudes are equal.

D Watch Video Solution

4. $A B C$ is a triangle in which altitudes $B D$ and $C E$ to sides
$A C$ and $A B$ are equal (see figure). Show that
(i) $\triangle A B D \cong \triangle A C E$
(ii) $A B=A C$ i.e., ABC is an isosceles triangle.
5. $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on thesame base BC (see figure). Show that $\angle A B D=\angle A C D$.

D Watch Video Solution

Exercise 73

1. $A D$ is an altitude of an isosceles triangle $A B C$ in which
$\mathrm{AB}=\mathrm{AC}$. Show that, (i) AD bisects BC (ii) AD bisects $\angle A$.

- Watch Video Solution

2. Two sides $A B, B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides PQ and QR and median PN of $\triangle P Q R$ (See figure). Show that:
(i) $\Delta A B M \cong \triangle P Q N$
(ii) $\triangle A B C \cong \triangle P Q R$

D Watch Video Solution

3. $B E$ and $C F$ are two equal altitudes of a triangle $A B C$.

Using RHS congruence rule, prove that the triangle ABC is isosceles.

D Watch Video Solution

4. $\triangle A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Show that $\angle B=\angle C$.

- Watch Video Solution

5. $\triangle A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. Side $B A$ is produced to D such that $A D=A B$ (see figure). Show that $\angle B C D$ is a right angle.

- Watch Video Solution

6. ABC is a right angled triangle in which $\angle A=90^{\circ}$ and $A B=A C$. Show that $\angle B=\angle C$.

- Watch Video Solution

7. Show that the angles of an equilateral triangle are 60° each.

D Watch Video Solution

1. Show that in a right angled triangle, the hypotenuse is the longest side.

- Watch Video Solution

2. In adjacent figure, sides AB and AC of $\triangle A B C$ are extended to points P and Q respectively. Also, $\angle P B C<\angle Q C B$. Show that AC $>\mathrm{AB}$.

- Watch Video Solution

3. In adjacent figure, $\angle B<\angle A$ and $\angle C<\angle D$ Show that $A D<B C$.

- Watch Video Solution

4. $A B$ and $C D$ are respectively the smallest and longest sides of aquadrilateral ABCD (see adjacent figure). Show that $\angle A>\angle C$ and $\angle B>\angle D$.

- Watch Video Solution

5. In adjacent figure, $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle Q P R$. Prove that $\angle P S R>\angle P S Q$.

- Watch Video Solution

6. If two sides of a triangle measure 4 cm and 6 cm find
all possible measurements (positive Integers) of the third side. How many distinct triangles can be obtained?

- Watch Video Solution

7. Try to construct a triangle with $5 \mathrm{~cm}, 8 \mathrm{~cm}$ and 1 cm . Is
it possible or not? Why? Give your justification?

- Watch Video Solution

