©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MATHEMATICS -II(B) MODEL PAPER -10

Section A

1. Find the area of the triangle formed by the
line $3 x-4 y+12=0$ with the coordinate axes.
2. Find the equationof the straight line passing through the point ($-2,4$) and making intercepts, whose sum is zero

- Watch Video Solution

3. Find the angle between the planes
$2 x-y+z-6=0, x+y+2 z-7=0$.

- Watch Video Solution

4. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedro, find the fourth vertex to that tetrahedron.

D Watch Video Solution

5.

Compute
$L t_{x \rightarrow 0} \frac{a^{x}-1}{b^{x}-1}(a>0, b>0, b \neq 1)$.

D Watch Video Solution

6. Find $L t_{x \rightarrow 0+}\left(\frac{2|x|}{x}+x+1\right)$

- Watch Video Solution

7. IF $y-\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, find $\frac{d y}{d x}$.

- Watch Video Solution

8. If $y=a e^{n x}+b e^{-n x}$, then prove that

$$
y^{\prime \prime}=n^{2} y .
$$

9. If $y=x^{2}+x, x=10, \Delta x=0.1$, then find
Δy and dy

- Watch Video Solution

10. Verify Rolle's theorem of the function

$$
\log \left(x^{2}+2\right)-\log 3 \text { on }(-1,1)
$$

(Watch Video Solution

Section B

1. Find the equation of the locus of P, if $A=(2,3)$, $B=(2,-3)$ and $P A+P B=8$.

D Watch Video Solution

2. When the axes are rotated through an angle
$\pi / 6$. Find the transformed equation of
$x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$.

D Watch Video Solution

3. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units from the point (3,2).

- Watch Video Solution

4. Is
f
given
$f(x)= \begin{cases}\frac{x^{2}-9}{x^{2}-2 x-3} & \text { if } 0<x<5 \text { and } x \neq 3 \\ 1.5 & \text { if } x=3\end{cases}$
, continuous at the points 3 .
5. Find the derivative of $x \sin x$ from the first principle.

- Watch Video Solution

6. The volume of a cube is increasing at the rate of $8 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the length of an edge is 12 cm ?

- Watch Video Solution

7. A particle is moving in a straight line so that after t seconds its distance is s (in cms) from a
fixed point on the line is given by $s=f(t)=8 t+t^{3}$. Find the velocity at time $\mathrm{t}=2 \mathrm{sec}$ (ii) the initial velocity can acceleration at $\mathrm{t}=2 \mathrm{sec}$

- Watch Video Solution

8. A particle is moving in a straight line so that after t seconds its distance is s (in cms) from a
fixed point on the line is given by
$s=f(t)=8 t+t^{3}$. Find the velocity at time $\mathrm{t}=2 \mathrm{sec}$ (ii) the initial velocity can acceleration at $\mathrm{t}=2 \mathrm{sec}$

D Watch Video Solution

9. A particle is moving in a straight line so that after t seconds its distance is s (in cms) from a
fixed point on the line is given by $s=f(t)=8 t+t^{3}$. Find the velocity at time
$\mathrm{t}=2 \mathrm{sec}$ (ii) the initial velocity can acceleration
at $\mathrm{t}=2 \mathrm{sec}$

Watch Video Solution

Section C

1. Find the orthocentre of the triangle formed by the vertices $(-2,-1),(6,-1),(2,5)$

D Watch Video Solution

> 2. $\begin{aligned} & \text { If } \\ & S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0\end{aligned}$ the equation
represents a pair of parallel straight lines then
show that
(i) $h^{2}=a b$ (ii) $a f^{2}=b g^{2}$ and
(iii) the distance between the parallel lines

$$
=\sqrt[2]{\frac{g^{2}-c a}{a(a+b)}}=\sqrt[2]{\frac{f^{2}-b c}{b(a+b)}}
$$

D Watch Video Solution

3. $\begin{aligned} & \text { If } \\ & S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0\end{aligned}$
represents a pair of parallel straight lines then
show that
(i) $h^{2}=a b$ (ii) $a f^{2}=b g^{2}$ and
(iii) the distance between the parallel lines
$=\sqrt[2]{\frac{g^{2}-c a}{a(a+b)}}=\sqrt[2]{\frac{f^{2}-b c}{b(a+b)}}$

D Watch Video Solution

4. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two parallel lines then prove that the distance between the parallel lines is
$2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$ or $2 \sqrt{\frac{f^{2}-b c}{b(a+b)}}$.

D Watch Video Solution
5. Show that the lines joining the origin to the points of intersection of the curve $x^{2}+x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular.

D Watch Video Solution

6. Find the angle between the diagonals of a cube.

Datch Video Solution

7.

$y=x \sqrt{a^{2}+x^{2}}+a^{2} \log \left(x+\sqrt{a^{2}+x^{2}}\right)$,
then show that $\frac{d y}{d x}=2 \sqrt{a^{2}+x^{2}}$.
8. Find the positive integers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

- Watch Video Solution

9. S.T the
curves
$6 x^{2}-5 x+2 y=0,4 x^{2}+8 y^{2}=3 \quad$ touch
each other at $\left(\frac{1}{2}, \frac{1}{2}\right)$.

D Watch Video Solution

