©゙doubtnut

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MODEL PAPER 11

Section A I Very Short Answer Type Questions

1. If $f: Q \rightarrow Q$ is defined by $f(x)=5 x+4$, find f^{-1}.

- Watch Video Solution

2. Find the domain of the real function $f(x)=\sqrt{4 x-x^{2}}$

- Watch Video Solution

3. If $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 1 & 5\end{array}\right], B=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 1 & -2\end{array}\right]$ then find (AB')'.

- Watch Video Solution

4. If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}3 & 8 \\ 7 & 2\end{array}\right]$ and $2 X+A=B$ then find X .

- Watch Video Solution

5. IF the vectors $-3 \bar{i}+4 \bar{j}+\lambda \bar{k}, \mu \bar{i}+8 \bar{j}+6 \bar{k}$ are collinear vectors then find $\lambda \& \mu$.

- Watch Video Solution

6. Find the vector equation of the plane passing through the points.
$\vec{i}-2 \vec{j}+5 \vec{k},-5 \vec{j}-\vec{k}$ and $-3 \vec{j}+5 \vec{j}$.

- Watch Video Solution

7. Find the angle between the vectors $\vec{i}+2 \vec{j}+3 \vec{k}$ and $3 \vec{i}-\vec{j}+2 \vec{k}$.

- Watch Video Solution

8. If $3 \sin A+4 \cos A=5$, then find the value of $4 \sin \theta-3 \cos \theta$.

- Watch Video Solution

9. Show that $\cos 42^{\circ}+\cos 78^{\circ}+\cos 162^{\circ}=0$

- Watch Video Solution

10. If $\sinh x=\frac{3}{4}$ then find $\cosh 2 x$ and $\sinh 2 x$.

- Watch Video Solution

1. IF $3 A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ then show that $A^{-1}=A^{\prime}$.

- Watch Video Solution

2. Find the vector equation of the plane which passes through the points $2 \bar{i}+4 \bar{j}+2 \bar{k}, 2 \bar{i}+3 \bar{j}+5 \bar{k}$ and parallel to the vector $3 \bar{i}-2 \bar{j}+\bar{k}$. Also find the point where this plane meets the line joining the points $2 \bar{i}+\bar{j}+3 \bar{k}$ and $4 \bar{i}-2 \bar{j}+3 \bar{k}$.

- Watch Video Solution

3. P.T the smaller angle θ between any two diagonals of a cube is given by $\cos \theta=1 / 3$
4. IF θ is not an integral muliple of $\frac{\pi}{2}$, prove that $\tan \theta+2 \tan 2 \theta+4 \tan 4 \theta+8 \cot 8 \theta=\cot \theta$

- Watch Video Solution

5. Solve $\sqrt{2}(\sin x+\cos x)=\sqrt{3}$

- Watch Video Solution

6. Prove that $\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{8}{17}=\cos ^{-1} \frac{36}{85}$

- Watch Video Solution

7. Prove that $\cot A+\cot B+\cot C=\frac{a^{2}+b^{2}+c^{2}}{4 \triangle}$.

- Watch Video Solution

1. If $f: A \rightarrow B, g: B \rightarrow C$ are two bijective functions then prove that $g o f: A \rightarrow C$ is also a bijective function.

- Watch Video Solution

2. Using the principle of finite Mathematical Induction prove the following:
(v) $3.5^{2 n+1}+2^{3 n+1}$ is divisible by $17, \forall n \in N$.

- Watch Video Solution

3. Show that $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$.

- Watch Video Solution

4. Solve the system of equations by Matrix inverse method, $2 x-y+3 z=8,-x+2 y+z=4,3 x+y-4 z=0$

- Watch Video Solution

5.

$\vec{a}=\vec{i}-2 \vec{j}-3 \vec{k}, \vec{b}=2 \vec{i}+\vec{j}-\vec{k}$ and $\vec{c}=\vec{i}+3 \vec{j}-2 \vec{k}$, verify that $\vec{a} \times(\vec{b} \times \vec{c}) \neq(\vec{a} \times \vec{b}) \times \vec{c}$.

- Watch Video Solution

6. If A, B, C are the angles in a triangle then prove that $\sin . \frac{A}{2}+\sin \cdot \frac{B}{2}+\sin . \frac{C}{2}=1+4 \sin \left(\frac{\pi-A}{4}\right) \sin \left(\frac{\pi-B}{4}\right) \sin \left(\frac{\pi-C}{4}\right.$

- Watch Video Solution

7. If $r_{1}=2, r_{2}=3, r_{3}=6$ and $r=1$, prove that $a=3, b=4$ and $c=5$.

- Watch Video Solution

Section A Very Short Answer Type Questions

1. Find the value of x if the slope of the line passing through $(2,5)$ and $(x, 3)$ is 2 .

- Watch Video Solution

2. Transform the equation of $x+y+1=0$ into

Normal form
3. Show that the points $(1,2,3),(2,3,1)$ and $(3,1,2)$ form an equilateral triangle.

Watch Video Solution

4. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$.

- Watch Video Solution

5. Show that $\operatorname{Lt}_{x \rightarrow 0^{+}}\left\{\frac{2|x|}{x}+x+1\right\}=3$.

- Watch Video Solution

6. Find $\underset{x \rightarrow 0}{ } \frac{e^{3+x}-e^{3}}{x}$

- Watch Video Solution

7. If $f(x)=a^{x}$. $e^{x^{2}}$ then find $f^{\prime}(x)$.

- Watch Video Solution

8. A grocer has a sale of Rs. 6435, Rs. 6927, Rs. 6855, Rs. 7230 and Rs. 6562 for 5 consecutive months. How much sale must he have in the sixth month so that he gets an average sale of Rs. 6500?

- Watch Video Solution

9. The average monthly income of P and Q is Rs. 5050. The average monthly income of Q and R is Rs. 6250 and the average monthly income of P and R is Rs. 5200 . The monthly income of P is:

- Watch Video Solution

10. $2 x+32=24$ then find x ?

Section B Short Answer Type Questions

1. $A(2,3)$ and $B(-3,4)$ be two given points. Find the equation of the locus of P so that the area of the triangle PAB is 8.5 sq.units.

- Watch Video Solution

2. When the axes are rotated through an angle $\pi / 6$. Find the transformed equation of $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$.

- Watch Video Solution

3. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units from the point (3,2).
4. Show that
$f(x)=\left\{\begin{array}{ll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{array}\right.$ where a and b are real constants is continuous at $\mathrm{x}=0$.

- Watch Video Solution

5. Find the derivative of $\sin 2 x$ from the first principles.

- Watch Video Solution

6. A particle is moving in a straight line so that after 't' seconds its distance is ' S ' (in cms) from a fixed point of the line is given be $\mathrm{S}=\mathrm{f}(\mathrm{t})=$ $8 t+t^{3}$.

Find (i) the velocity at time $\mathrm{t}=2$ (ii) the initial velocity (iii) acceleration at $\mathrm{t}=2 \mathrm{sec}$
7. A particle is moving along a line according $s=f(t)=8 t+t^{3}$. Find the initial velocity

- Watch Video Solution

8. A particle is moving in a straight line so that after 't' seconds its distance is ' S ' (in cms) from a fixed point of the line is given be $\mathrm{S}=\mathrm{f}(\mathrm{t})=$ $8 t+t^{3}$.

Find (i) the velocity at time $\mathrm{t}=2$ (ii) the initial velocity (iii) acceleration at $\mathrm{t}=2 \mathrm{sec}$

- Watch Video Solution

9. S.T the tangent at any point θ on the curve $x=c \sec \theta, y=c \tan \theta$ is $y \sin \theta=x-\cos \theta$.

- Watch Video Solution

1. Find the equation of straight lines passing through $(1,2)$ and making an angle 60° with the line $\sqrt{3} x+y+2=0$.

- Watch Video Solution

2. Show that the area of the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $l m+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h l m+b l^{2}\right|}$

- Watch Video Solution

3. Find the value if k, if the lines joining the origin with the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the $\mathrm{x}+$ $2 \mathrm{y}=\mathrm{k}$ are mutually perpendicular .

- Watch Video Solution

4. If a line makes angles $\alpha, \beta, \lambda, \delta$ with the four diagonals of a cube, then show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \lambda+\cos ^{2} \delta=\frac{4}{3}$.

- Watch Video Solution

5. If $x=\frac{3 a t}{1+t^{3}}, y=\frac{3 a t^{2}}{1+t^{3}}$ then find $\frac{d y}{d x}$.

- Watch Video Solution

6. At any point t on the curve $x=a(t+\sin t), y=a(1-\cos t)$ find the lengths of tangent and normal.

- Watch Video Solution

7. A wire of length I is cut into two parts which are bent respectively in the form of a square and a circle. What are the lengths of pieces of wire so that the sum of areas is least ?
\square
