

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MODEL PAPER 11

Section A I Very Short Answer Type Questions

1. If $f \colon Q o Q$ is defined by f(x) = 5x + 4, find f^{-1} .

Watch Video Solution

2. Find the domain of the real function $f(x) = \sqrt{4x - x^2}$

3. If
$$A = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 1 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & -2 \end{bmatrix}$ then find (AB')'.

4. If
$$A = egin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = egin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$$
 and $2X + A = B$ then find X.

Watch Video Solution

5. IF the vectors $-3ar{i}+4ar{j}+\lambdaar{k},\muar{i}+8ar{j}+6ar{k}$ are collinear vectors then

find $\lambda \& \mu$.

Watch Video Solution

6. Find the vector equation of the plane passing through the points.

$$\overrightarrow{i} - 2\overrightarrow{j} + 5\overrightarrow{k}, \ -5\overrightarrow{j} - \overrightarrow{k} ext{ and } -3\overrightarrow{j} + 5\overrightarrow{j}.$$

10. If
$$\sinh x = \frac{3}{4}$$
 then find $\cosh 2x$ and $\sinh 2x$.

1. IF
$$3A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$
 then show that $A^{-1} = A'$.

2. Find the vector equation of the plane which passes through the points $2\overline{i} + 4\overline{j} + 2\overline{k}, 2\overline{i} + 3\overline{j} + 5\overline{k}$ and parallel to the vector $3\overline{i} - 2\overline{j} + \overline{k}$. Also find the point where this plane meets the line joining the points $2\overline{i} + \overline{j} + 3\overline{k}$ and $4\overline{i} - 2\overline{j} + 3\overline{k}$.

Watch Video Solution

3. P.T the smaller angle θ between any two diagonals of a cube is given by

 $\cos heta=1/3$

4. IF θ is not an integral muliple of $\frac{\pi}{2}$, prove that

 $an heta + 2 an 2 heta + 4 an 4 heta + 8 \cot 8 heta = \cot heta$

5. Solve
$$\sqrt{2}(\sin x + \cos x) = \sqrt{3}$$

Watch Video Solution

6. Prove that
$$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \cos^{-1}\frac{36}{85}$$

Watch Video Solution

7. Prove that
$$\cot A + \cot B + \cot C = rac{a^2+b^2+c^2}{4 riangle}.$$

1. If f:A o B, g:B o C are two bijective functions then prove that gof:A o C is also a bijective function.

Watch Video Solution

Watch Video Solution

2. Using the principle of finite Mathematical Induction prove the following:

(v) $3.5^{2n+1}+2^{3n+1}$ is divisible by $17,~orall n\in N.$

4. Solve the system of equations by Matrix inverse method,
$$2x - y + 3z = 8$$
, $-x + 2y + z = 4$, $3x + y - 4z = 0$

5. If

$$\vec{a} = \vec{i} - 2\vec{j} - 3\vec{k}, \vec{b} = 2\vec{i} + \vec{j} - \vec{k} \text{ and } \vec{c} = \vec{i} + 3\vec{j} - 2\vec{k},$$

verify that $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}.$
Watch Video Solution

6. If A, B, C are the angles in a triangle then prove that $\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} = 1 + 4\sin\left(\frac{\pi - A}{4}\right)\sin\left(\frac{\pi - B}{4}\right)\sin\left(\frac{\pi - C}{4}\right)$ Watch Video Solution

Section A Very Short Answer Type Questions

1. Find the value of x if the slope of the line passing through (2,5) and

(x,3) is 2.

Watch Video Solution

2. Transform the equation of x + y + 1 = 0 into

Normal form

3. Show that the points (1,2,3), (2,3,1) and (3,1,2) form an equilateral

triangle.

4. Find the angle between the planes 2x - y + z = 6 and x + y + 2z = 7.

Watch Video Solution

5. Show that
$$\mathop{
m Lt}\limits_{x
ightarrow 0^+} \left\{ rac{2|x|}{x} + x + 1
ight\} = 3.$$

Watch Video Solution

6. Find
$$\displaystyle {\operatorname{Lt} \over x o 0} \, {e^{3+x}-e^3 \over x}$$

7. If $f(x) = a^x$. e^{x^2} then find f'(x).

Watch Video Solution

8. A grocer has a sale of Rs. 6435, Rs. 6927, Rs. 6855, Rs. 7230 and Rs. 6562 for 5 consecutive months. How much sale must he have in the sixth month so that he gets an average sale of Rs. 6500?

Watch Video Solution

9. The average monthly income of P and Q is Rs. 5050. The average monthly income of Q and R is Rs. 6250 and the average monthly income of P and R is Rs. 5200. The monthly income of P is:

Watch Video Solution

10. 2x+32=24 then find x?

2. When the axes are rotated through an angle $\pi/6$. Find the transformed equation of $x^2+2\sqrt{3}xy-y^2=2a^2.$

Watch Video Solution

3. Find the points on the line 3x - 4y - 1 = 0 which are at a distance of

5 units from the point (3,2).

4. Show that

$$f(x) = egin{cases} rac{\cos ax - \cos bx}{x^2} & ext{if } x
eq 0 \ rac{1}{2} ig(b^2 - a^2 ig) & ext{if } x = 0 \ \end{cases}$$
 where a and b are real constants is

continuous at x = 0.

5. Find the derivative of sin2x from the first principles .

Watch Video Solution

6. A particle is moving in a straight line so that after 't' seconds its distance is 'S' (in cms) from a fixed point of the line is given be S=f(t)= $8t + t^3$.

Find (i) the velocity at time t=2 (ii) the initial velocity (iii) acceleration at t=2 sec

7. A particle is moving along a line according $s=f(t)=8t+t^3$. Find the

initial velocity

8. A particle is moving in a straight line so that after 't' seconds its distance is 'S' (in cms) from a fixed point of the line is given be S=f(t)= $8t + t^3$.

Find (i) the velocity at time t=2 (ii) the initial velocity (iii) acceleration at t=2 sec

Watch Video Solution

1. Find the equation of straight lines passing through (1,2) and making an angle $60^{\,\circ}$ with the line $\sqrt{3}x+y+2=0.$

Watch Video Solution

2. Show that the area of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lm + my + n = 0 is $\frac{n^2\sqrt{h^2 - ab}}{|am^2 - 2hlm + bl^2|}$ Watch Video Solution

3. Find the value if k , if the lines joining the origin with the points of intersection of the curve $2x^2 - 2xy + 3y^2 + 2x - y - 1 = 0$ and the x + 2y = k are mutually perpendicular .

4. If a line makes angles $lpha, eta, \lambda, \delta$ with the four diagonals of a cube, then

show that $\cos^2lpha + \cos^2eta + \cos^2\lambda + \cos^2\delta = rac{4}{3}.$

5. If
$$x=rac{3at}{1+t^3}, y=rac{3at^2}{1+t^3}$$
 then find $rac{dy}{dx}$.

Watch Video Solution

6. At any point t on the curve $x=a(t+\sin t), y=a(1-\cos t)$ find the

lengths of tangent and normal.

Watch Video Solution

7. A wire of length I is cut into two parts which are bent respectively in the form of a square and a circle. What are the lengths of pieces of wire so that the sum of areas is least ?