

India's Number 1 Education App

#### **MATHS**

## **BOOKS - VGS PUBLICATION-BRILLIANT**

#### **MODEL PAPER 12**

### **Section A Very Short Answer Type Questions**

**1.** If the function 
$$f$$
 is defined by  $f(x)=\left\{egin{array}{ll} 3x-2,&x>3\\ x^2-2,&-2\leq x\leq 2\\ 2x-1,&x<-3 \end{array}
ight.$ 

then find the values, if exist, of (i) f(4)



**2.** Find the domain of the real function  $\log (x^2 - 4x + 3)$ 



.....

**3.** Construct a 3 imes 2 matrix whose elements are defined by  $a_{ij}=rac{1}{2}|i-3j|$ 



- **4.** IF  $A = \left[ egin{array}{cc} 2 & 4 \\ -1 & k \end{array} 
  ight]$  and  $A^2 = 0$  then find the value of k
  - Watch Video Solution

- **5.** If ar a=2ar i+5ar j+ar k and ar b=4ar i+mar j+nar k are collinear vectors then find m,n.
  - Watch Video Solution

**6.** Find the vector equation of the line passing through the points



Watch Video Solution

**7.** If the vectors  $2ar i+\lambdaar j-ar k$  and 4ar i-2ar j+2ar k are perpendicular to each other than find  $\lambda.$ 



**8.** If  $\sec \theta + \tan \theta = 5$ , find the quadrant in which  $\theta$  lies and find the value of  $\sin \theta$ .



**9.** Prove that  $\sin^2 52 \frac{1}{2} - \sin^2 22 \frac{1}{2}$ .

**10.**  $(\cos hx - \sin hx)^n$  =

# Section B Short Answer Type Questions

**1.** If  $A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}$  then show that  $A^3 - 3A^2 - A - 3I = O$ ,

$$3ar i-2ar j-ar k,$$
  $2ar i+3ar j-4ar k,$   $-ar i+ar j+2ar k,$   $4ar i+5ar j+\lambdaar k$  are coplanar, then show that  $\lambda=-rac{146}{17}.$ 



3. If 
$$ar a=2ar i+3ar j+4ar k,$$
  $ar b=ar i+ar j-ar k,$   $ar c=ar i-ar j+ar k$ , compute

 $\bar{a}x(\bar{b}x\bar{c})$  and verify that it is perpendicular to  $\bar{a}$ .



**4.** Prove that 
$$\sin 78^\circ + \cos 132^\circ = \frac{\sqrt{5}-1}{4}$$
.



**5.** Solve the equation  $1+\sin^2\theta=3\sin\theta\cos\theta$ .



**7.** If 
$$a=(b-c)\sec\theta$$
, then prove that  $\tan\theta=\frac{2\sqrt{bc}}{b-c}\frac{\sin A}{2}$ .



## Section C Long Answer Type Questions

1. If  $f\colon A o B$  and  $g\colon B o A$  are two functions such that  $gof=I_A$  and  $fog=I_B$  then  $g=f^{-1}$ .



- **2.** Prove that  $a+ar+ar^2+.....$   $+n ext{terms}=rac{a(r^n+1)}{r-1}, r
  eq 1$ 
  - Watch Video Solution

3. 
$$\begin{vmatrix} a-b-c & 2b & 2c \ 2a & b-c-a & 2c \ 2a & 2b & c-a-b \end{vmatrix} =$$



**4.** Solve the equations x+y+z=9, 2x+5y+7z=52, 2x+y-z=0, by Gauss-

 $ar{a}=2ar{i}+ar{j}-3ar{k},\,ar{b}=ar{i}-2ar{j}+ar{k},\,\overline{C}=\,-\,ar{i}+ar{j}-4ar{k},\,\overline{D}=\,ar{i}+ar{j}+ar{k}$ 

If

Jordan Method.

5.

Watch Video Solution

, then compute  $\left|\left(ar{a} imesar{b}
ight) imes\left(ar{c} imesar{d}
ight)
ight|$  .

**6.** In triangle ABC, prove that  $\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{\pi - A}{4} \cos \frac{\pi - B}{4} \cos \frac{\pi - C}{4}$ 



**7.** In  $\triangle ABC$ , show that  $\frac{ab-r_1r_2}{r_3}=\frac{bc-r_2r_3}{r_1}=\frac{ca-r_3r_1}{r_2}$ 



## Section A Very Short Answer Type Questions

(i) parallel (ii) perpendicular to the straight line passing through

1. Find the equation of the straight line passing through A(-1,3) and

- B(2,-5),C(4,6)
  - Watch Video Solution

**2.** If the area of the triangle formed by the straight lines x=0, y=0 and 3x+4y=a(a>0 is 6. Find the value of a.



**3.** If (3, 2, -1) (4, 1,-1) and (6,2,5) are three vertices and (4, 2, 2) is the centroid of a tetrahedron, then find the fourth vertex.



- **4.** Find the equation of the plane whose intercepts on x, y, z axes are
- 1, 2, 4 respectively.
  - Watch Video Solution



**6.** Compute 
$$\mathop{
m Lt}_{x
ightarrow 0} rac{1-\cos 2mx}{\sin^2 nx} (m,n\in Z).$$

7. If  $f(x) = \log(\sec x + \tan x)$ , then find f'(x).

**8.** Find the derivative of the function  $\sin^{-1}(3x-4x^3)$ .





# Watch Video Solution



**9.** If an error of 3% occurs in measuring the side of a cube, find the percentage error in its volume.

**10.** Find the value of 'c' in Rolle's theorem for the function f(x)=(x-1)(x-2)(x-3) on [1,3].



## Section B Short Answer Type Questions

**1.** Find the equation of locus of a point such that the difference of whose distances from (-5,0) and (5,0) is 8



**2.** When the axes rotated through an angegle  $\frac{\pi}{4}$ , find the transformed equation of  $3x^2+10xy+3y^2=9$ .

**3.** Find the value of k if the angle between the straight lines

$$4x-y+7=0, kx-5y-9-0$$
 is  $45^\circ$ 



4. Check the continity of the following function at 2 .

$$f(x) = \left\{ egin{array}{ll} rac{1}{2}ig(x^2-4ig) & ext{if} \;\; 0 < x < 2 \ 0 & ext{if} \;\; x = 2 \ 2 - 8x^{-3} & ext{if} \;\; x > 2 \end{array} 
ight.$$

Watch Video Solution

- 5. Find the derivative of the function tan 2x from the first principle.
  - Watch Video Solution

**6.** A container in the shape of an inverted cone has height 12 cm and radius 6cm at the top. If it is filled with water at the rate of  $12cm^3/\mathrm{sec}$ , what is the rate of change in the rate of change in the height of water level when the tank is filled 8 cm?



**7.** Show that the area of the triangle formed by the tangent at any point on the curve xy=c, (c  $\neq$  0), with the coordinate axes is constant.



# Section C Long Answer Type Questions

**1.** Find the circumcentre of the triangle whose sides are 3x-y-5=0, x+2y-4=0 and 5x+3y+1=0.

2. If  $ax^2+2hxy+by^2+2gx+2fy+c=0$  represents two parallel lines then prove that  $h^2=ab$ .



3. If  $ax^2+2hxy+by^2+2gx+2fy+c=0$  represents two parallel lines then prove that  $af^2=bg^2.$ 



**4.** If  $ax^2+2hxy+by^2+2gx+2fy+c=0$  represents two parallel lines then prove that the distance between the parallel lines is  $2\sqrt{\frac{g^2-ac}{a(a+b)}}$  or  $2\sqrt{\frac{f^2-bc}{b(a+b)}}$ .



**5.** Find the angle between the lines joining the origin to the points of intersection of the curve  $x^2+2xy+y^2+2x+2y-5=0$  and the line 3x-y+1=0.



**6.** Find the angle between the lines whose direction cosines satisfy the equaitons l+m+n=0,  $l^2+m^2-n^2=0.$ 



7. If 
$$\sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y)$$
, then show that  $rac{dy}{dx}=rac{\sqrt{1-y^2}}{\sqrt{1-x^2}}.$ 

**8.** S.T the curves  $y^2=4(x+1), y^2=36(9-x)$  intersect orthogonally.



**9.** Show that when the curved surface of a is right circular cylinder inscribed in a sphere of radius R is maximum , then the height of the cylinder is  $\sqrt{2R}$ .

