

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MODEL PAPER 3

1. If
$$f\colon R-(\pm 1) o R$$
 is defined by $f(x)=\log\Bigl|rac{1+x}{1-x}\Bigr|$, then show that $f\Bigl(rac{2x}{1+x^2}\Bigr)=2f(x).$

Watch Video Solution

2. Find the domain of the real function $f(x) = \sqrt{x^2 - 25}$

3. If
$$A = egin{bmatrix} a & b \ c & d \end{bmatrix}$$
 then find $A + A^T$ and $orall^T$

Watch Video Solution

4. Find the rank of the matrix

Watch Video Solution

5. Let $ar{a}=ar{i}+2ar{j}+3ar{k}$ and $ar{b}=3ar{i}+ar{j}$ Find the unit vector in the direction of $ar{a}+ar{b}$

6. Find the vector equation of the plane passing through the points

(0,0,0), (0,5,0) and (2,0,1)

7. If $\sec heta + \tan heta = 2/3$, then value of $\sin heta$ and determine the quadrant in which heta lies .

Watch Video Solution

8. If A is not an intergral multiple of $\pi/2$, prove that

 $an A + \cot A = 2 \mathrm{cosec} 2A$

9. If $\cosh x = 5/2$, then find the values of

2. If ABCDEF is a regular hexagon with centre O , then P.T $\overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} = 3\overline{AD} = 6\overline{AO}$

3. Let
$$ar{a}=4ar{i}+5ar{j}-ar{k},$$
 $ar{b}=ar{i}-4ar{j}+5ar{k}$ and $ar{c}=3ar{i}+ar{j}-ar{k}$ Find

vector \overline{lpha} which is perpendicular to both $ar{a}$ and $ar{b}$ and \overline{lpha} . $ar{c}=21$

View Text Solution

4. Prove that
$$\cos^2 76^\circ + \cos^2 16^\circ - \cos 76^\circ \cos 16^\circ = rac{3}{4}$$

Watch Video Solution

5. Solve
$$\sqrt{2}(\sin x + \cos x) = \sqrt{3}$$

6. Show that
$$\cos\left(2\tan^{-1},\frac{1}{7}\right) = \sin\left(2\tan^{-1},\frac{3}{4}\right)$$

Watch Video Solution
7. Show that $a^2 \cot A + b^2 \cot B + c^2 \cot C = \frac{abc}{R}$
Watch Video Solution
Section C

1. If
$$f \colon A o B$$
 and $g \colon B o A$ are two functions such that

$$gof = I_A$$
 and $fog = I_B$ then $g = f^{-1}$.

2. Using the principle of finite Mathematical Induction prove the

following:

(v) $3.5^{2n+1}+2^{3n+1}$ is divisible by $17, \ \forall n \in N.$

4. Solve the following equations by Gauss Jordan Method

x+y+ z=1, 2x+ 2y+ 3z= 6 and x+ 4y+ 9z =3

View Text Solution

5. If $\bar{a} = \bar{i} - 2\bar{j} - 3\bar{k}$, $\bar{b} = 2\bar{i} + \bar{j} - \bar{k}$, $\bar{c} = \bar{i} + 3\bar{j} - 2\bar{k}$ then find $\bar{a} \times (\bar{b} \times \bar{c})$ and $|(\bar{b} \times \bar{c}) \times \bar{c}|$.

Watch Video Solution

6. If A, B, C are angles of a triangle, then prove that

$$\sin^2 rac{A}{2} + \sin^2 rac{B}{2} - \sin^2 rac{C}{2} = 1 - 2\cos rac{A}{2} \cos rac{B}{2} \sin rac{C}{2}.$$

Watch Video Solution

7. Show that $r + r_3 + r_1 - r_2 = 4R \cos B$.

Watch Video Solution

Section A Very Short Answer Type Questions

1. Find the equation of the straight line passing through (-4,5) and cutting off equal and non-zero intercepts on the co-ordinate axes.

2. If the area of the triangle formed by the straight lines

x=0,y=0 and 3x+4y=a(a>0 is 6. Find the value of a.

Watch Video Solution

3. Show that the points (1,2,3),(2,3,1) and (3,1,2) from an equilateral

triangle.

4. Find the equation of the plane passing through the point (1,1,1) and parallel to the plane x + 2y + 3z - 7 = 0

Watch Video Solution

5. Compute
$$Lt_{x
ightarrow 0} rac{\sin ax}{\sin bx}, b
eq 0, a
eq b$$

Watch Video Solution

6. Evaluate
$$Lt_{x
ightarrow\infty}rac{11x^3-3x+4}{13x^3-5x^2-7}$$

Watch Video Solution

7. Find the derivative of $y = e^{\sin - 1}x$.

5. Find the derivative of $\cos ax$ from the first Principle.

Watch Video Solution	
6 The volume of a cube is increasing at a rate of 8 cubie centimeters	

per second. How fast is the surface area increasing when the length

of the edge is 12 cm?

Watch Video Solution

7. Find the length of subtangent subnormal at a pont t on the curve

$$x = a(\cos t + \sin t)y = a(\sin t - t\cos t)$$

Watch Video Solution

Section C Long Answer Type Questions

1. Find the orthocentre of the triangle formed by the vertices (-2,-1),

(6,-1),(2,5)

2. S.T the equation $2x^2 - 13xy - 7y^2 + x + 23y - 6 = 0$ represents a pair of straight lines. Also find the angle between them and the coordinates of the point of intersection of the lines.

Watch Video Solution

3. Show that the lines joining the origin to the points of intersection of the curve $x^2 + xy + y^2 + 3x + 3y - 2 = 0$ and the straight line $x - y - \sqrt{2} = 0$ are mutually perpendicular .

4. Show that the lines whose d.c's are given by l + m + n = 0,2mn + m

3nl - 5ln = 0 are perpendicular to each other.

Watch Video Solution

$$y = an^{-1} igg(rac{2x}{1-x^2} igg) + an^{-1} igg(rac{3x-x^3}{1-3x^2} igg) - an^{-1} igg(rac{4x-4x^3}{1-6x+x^4} igg),$$
 then show that $rac{dy}{dx} = rac{1}{1+x^2}.$

lf

Watch Video Solution

6. S.T the curves $6x^2-5x+2y=0, 4x^2+8y^2=3$ touch each other at $\left(rac{1}{2},rac{1}{2}
ight)$.

7. Find two positive numbers whose sum is 15 so that the sum of

their squares is minimum.

