

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MODEL PAPER 5

Section A Very Short Answer Type Questions

1. Find the equation of the straight line passing through the point (-2, 4) and making intercepts whose sum is zero.

4. Find the equation of the plane passing through the point (1,1,1) and parallel to the plane x + 2y + 3z - 7 = 0

Watch Video Solution

6. Check the continuity of the function 'f

defined by

$$f(x) = \begin{cases} \frac{\sin 2x}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases} \text{ at } x = 0$$

Watch Video Solution

7. If $f(x) = \log (\sec x + \tan x)$, then find f' (x).

Watch Video Solution

9. If $y=x^2+x, x=10, \Delta x=0.1, ext{ then find}$

 Δy and dy

10. Three unbiased coins are tossed. What is

the probability of getting at most two heads?

Watch Video Solution

Section B Short Answer Type Questions

1. A(5,3) and B(3,-2) are 2 fixed points. Find the equation of locus of P, so that the area of $\triangle PAB$ is 9sq. Units.

2. When the origin is shifted to the point (2,3) the transformed equation of a curve is $x^2 + 3xy - 2y^2 + 17x - 7y - 11 = 0$. Find the original equation of curve.

Watch Video Solution

3. Find the value of p, if the lines 3x + 4y = 5,

2 x + 3y = 4, px + 4y = 6 are concurrent.

6. A stone is dropped into a quiet lake and ripples move in circles at the speed of 5

cm/sec. At the instant when the radius of circular ripple is 8cm, how fast is the enclosed area increases?

Watch Video Solution

7. Show that at any point (x,y) on the curve $y = b^{\frac{x}{a}}$, the length of the subtangent is a constant and the length of the subnormal is $\frac{y^2}{a}$.

1. Find the circumcentre of the triangle whose

vertices are (1,3) (-3,5) and (5,-1).

Watch Video Solution

2. Show that the product of the perpendicular from (alpha,beta) to the pair of lines $S\equiv ax^2+2hxy+by^2+2gx+2fy+c=0$ is $rac{|alpha^2+2hlphaeta+2glpha+2glpha+2feta+c|}{\sqrt{(a-b)^2+4h^2}}$ Hence or

straight lines joining the origin to the points

of intersection of the 6x - y + 8 = 0 with the

pair of straight lines $3x^2 + 4xy - 4y^2 - 11x + 2y + 6 = 0$. Show that the lines so obtained make equal angles with the coordinates axes.

4. Find the angle between the lines whose

direction cosines satisfy the equations :

3l+ m + 5n = 0 and

6mn - 2nl+ 5lm = 0.

View Text Solution

5. If the tangent at any point on the curve $x^{rac{2}{3}}+y^{rac{2}{3}}=a^{rac{2}{3}}$ intersects the co-ordinate axes

at A and B, then show that the length AB is a

constant.

6. A window is in the shape of a rectangle surmounted by a semi circle. If the perimeter of the window is 20 ft, find the maximum area:

View Text Solution