MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MODEL PAPER 7

Section A

1. If $A=\{-2,\,-1,0,1,2\}$ and $f\!:\!A o B$ is a surjection defined by $f(x)=x^2+x+1$, then find B.

Watch Video Solution

2. Find the domain of the real valued function $f(x) = \sqrt{9-x^2}.$

3. Construct a 3 imes 2 matrix whose elements are defined by $a_{ij}=rac{1}{2}|i-3j|$

4. IF $A = \left[egin{array}{cc} 2 & 4 \ -1 & k \end{array}
ight]$ and $A^2 = 0$ then find the value of

5. If α , β and γ be the angle made by the vector $3\bar{i}-6\bar{j}+2\bar{k}$ with the positive direction of the coordinate axes, then find $\cos\alpha$, $\cos\beta$, $\cos\gamma$.

Watch Video Solution

6. Find the vector equation of the plane passing through the points

$$\overline{i}-2\overline{j}+5\overline{k},\ -5\overline{j}-\overline{k}\ ext{and}\ -3\overline{i}+5\overline{j}.$$

7. If $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}$, then find the projection vector of \overrightarrow{b} on \overrightarrow{a} and its

magnitude.

8. If $\cos\theta=t(0< t<1)$ and θ does not lies in the first quadrent , find $\sin\theta$ and $\tan\theta$.

9. Find the maximum and minimum values of $13\cos x + 3\sqrt{3}\sin x - 4$.

10.
$$\tan h^{-1}\left(\frac{1}{2}\right) =$$

Section B

1. If A is a non-singular matrix then prove that

$$A^{-1}=rac{adjA}{|A|}.$$

- **2.** $ar a, \, ar b, \, ar c$ are non coplanar vectors. Prove that the four points -ar a+4ar b-3ar c , 3ar a+2ar b-5ar c , -3ar a+8ar b-5ar c ,
 - Watch Video Solution

 $-3\bar{a}+2b+\bar{c}$ are co-planar.

- **3.** Find the unit vector perpendicular to the plane passing through the points (1,2,3),(2,-1,1) and (1,2,-4).
 - Watch Video Solution

4. Prove that $\sqrt{3}\mathrm{cosec}20^\circ - \mathrm{sec}20^\circ = 4$.

5. Solve the equation $1+\sin^2\theta=3\sin\theta\cos\theta$.

6. Prove that :
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$

7. If
$$\frac{\cot A}{2}$$
: $\cot \frac{B}{2}$: $\cot \frac{C}{2} = 3:5:7$ then show that $a:b:c=6:5:4$.

Section C

1. If $f \colon A \to B$ is a bijective function then prove that

(i)
$$fof^{-1}=I_B$$

Watch Video Solution

2. If $f\colon A o B$ is a bijective function then prove that

(ii)
$$f^{-1}of = I_A$$
.

Watch Video Solution

3. By Mathematical Induction, show that $49^n + 16n - 1$ is divisible by 64 for all positive Integer n.

Watch Video Solution

4. Show that $\begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$ =(a-b)(b-c)(c-a)(ab+bc+ca)

5.

Watch Video Solution

x + y + z = 9, 2x + 5y + 7z = 52 and 2x + y - z = 0

Solve

by using matrix inversion method.

6. If A=(1, -2, -1), B= (4, 0, -3), C = (1, 2, -1), D=(2, -4, -5)`, then distance between AB and CD is

7. If $A+B+C=180^\circ, ext{ then show that }$ $\cos 2A+\cos 2B-\cos 2C=-4\sin A.\sin B.\cos C+1.$

8. If $r_1 = 8, \, r_2 = 12 r_3 = 24$ then C=

Watch Video Solution