

India's Number 1 Education App

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MODEL PAPER 8

Section A Very Short Answer Type Questions

1. If
$$A=\left\{0,\frac{\pi}{6},\frac{\pi}{4},\frac{\pi}{3},\frac{\pi}{2}\right\}$$
 and $f\!:\!A\to B$ is a surjection defined by

$$f(x) = \cos x$$
 then find B.

Watch Video Solution

2. If
$$f: Q \to Q$$
 is defined by $f(x) = 5x + 4$, find f^{-1} .

Watch Video Solution

- **3.** if $A = [(I,0)(0,\ -i)]$ then show that $A^2 = -1(i^2 = -1)$.
 - Watch Video Solution

- **4.** If $A = \begin{bmatrix} -1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & x & 7 \end{bmatrix}$ is a symmetric matrix then find x.
 - Watch Video Solution

- **5.** If $\overrightarrow{a}=2\overrightarrow{i}+5\overrightarrow{j}+\overrightarrow{k}$ and $\overrightarrow{b}=4\overrightarrow{i}+m\overrightarrow{j}+n\overrightarrow{k}$ are collinear vectors, then find the m and n
 - Watch Video Solution

- **6.** Find the vector equation of the line joining the points $2\stackrel{\rightarrow}{i}+4j+3\stackrel{\rightarrow}{k}$ and $-4\stackrel{\rightarrow}{i}+3\stackrel{\rightarrow}{j}-\stackrel{\rightarrow}{k}$.
 - Watch Video Solution

7. Find the area of the parallelogram having $\overrightarrow{a}=2\overrightarrow{j}-\overrightarrow{k}$ and $\overrightarrow{b}=-\overrightarrow{i}+\overrightarrow{k}$ as adjacent sides.

- **8.** If $\tan 20^\circ = \lambda$ then show that $\frac{\tan 160^\circ \tan 110^\circ}{1 + \tan 160^\circ . \, \tan 110^\circ} = \frac{1 \lambda^2}{2\lambda}$.
 - Watch Video Solution

- **9.** Find a sine function whose period is 2/3.
 - Watch Video Solution

- **10.** If $\cosh x = 5/2$, then find the values of $\cosh(2x)$
 - Watch Video Solution

Section B Short Answer Type Questions

1. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 then show that $A^2 - 4A - 5I = O$.

2. If ABCDEF is a regular hexagon with centre O , then P.T
$$\overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} = 3\overline{AD} = 6\overline{AO}$$

 $ar{i}+ar{i}+ar{k},\,ar{i}-ar{i},\,ar{i}+2ar{i}+ar{k}.$

4. Show that $\frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} = 4$.

3. Find the volume of the tetrahedron having the edges

5. Solve
$$\sqrt{2}(\sin x + \cos x) = \sqrt{3}$$

6. Prvoe that
$$\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$
.

7. If
$$\sin \theta = \frac{a}{b+c}$$
 then show that $\cos \theta = \frac{2\sqrt{bc}}{b+c} \cos \left(\frac{A}{2}\right)$

Section C Long Answer Type Questions

- 1. If $f\colon A o B$ and $g\colon B o C$ are two bijective functions then prove that $gof\colon A o C$ is also a bijection.
 - Watch Video Solution

2. Using the principle of finite Mathematical Induction prove that

$$1^2 + \left(1^2 + 2^2\right) + \left(1^2 + 2^2 + 3^2\right) + ext{n terms} = rac{n(n+1)^2(n+2)}{12}, \ orall n \in N$$

3. Show that $\left|egin{array}{ccc} a+b+2c & a & b \ c & b+c+2a & b \ c & a & c+a+2b \end{array}
ight|=2(a+b+c)^3.$

Watch Video Solution

4. Solve the following system of equations by using Cramer's rule.

$$2x - y + 3z = 9, x + y + z = 6, x - y + z = 2.$$

5. If
$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}$$
, $\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ then find $\left| \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \overrightarrow{c} \right|$ and $\left| \overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c} \right) \right|$.

- Watch Video Solution

 $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} - \sin^2 \frac{C}{2} = 1 - 2\cos \frac{A}{2}\cos \frac{B}{2}\sin \frac{C}{2}.$

6. If A, B, C are angles of a triangle, then prove that

Watch Video Solution

7. In a ΔABC if a=13, b=14, c=15 then show that $R=\frac{65}{8}, r=4, r_1=$

