びdoubtnut

MATHS

BOOKS - VGS PUBLICATION-BRILLIANT

MOST IMPORTANT QUESTIONS

Locus Short Answer Type Questions

1. $A(1,2), B(2,-3), C(-2,3)$ are three points. A point P moves such that $P A^{2}+P B^{2}=2 P C^{2}$. Show that the locus of P is $7 x-7 y+4=0$
2. Find the equation of locus of P, if the line segment joining $(2,3) \&(-1,5)$ subtends a right angle at P.

D Watch Video Solution

3. The ends of the hypertenuse of right angled triangle are $(0,6),(6,0)$. The locus of the third vertex is

- Watch Video Solution

4. Find the the locus of the third vertex of a right angled triangle, the ends of whose hypotenuse are $(4,0)$ and (0,4).
5. $A(5,3)$ and $B(3,-2)$ are 2 fixed points. Find the equation of locus of P , so that the area of $\triangle P A B$ is 9 sq . Units.

- Watch Video Solution

6. Find the locus of $P(x, y)$ which moves such that its distances from $\mathrm{A}(5,-4), \mathrm{B}(7,6)$ are in the ratio 2:3.

Watch Video Solution

7. Find the equation of the locus of P, if $A=(2,3), B=(2,-3)$ and $\mathrm{PA}+\mathrm{PB}=8$.

- Watch Video Solution

8. Find the equation of locus of P if
$A=(4,0), B(-4,0)$ and $|P A-P B|=4$

- Watch Video Solution

9. Find the equation of locus of P if

$$
A=(4,0), B(-4,0) \text { and }|P A-P B|=4
$$

10. Find the equation of locus of a point P such that the distance of P from the origin is twice the distance of P from $A(1,2)$.

- Watch Video Solution

Transformation Of Axes Short Answer Type Questions

1. When the origin is shifted to $(-1,2)$ by the translation of axes, find the transformed equation
$x^{2}+y^{2}+2 x-4 y+1=0$.
2. When the origin is shifted to the point $(2,3)$ the transformed equation of a curve is $x^{2}+3 x y-2 y^{2}+17 x-7 y-11=0$. Find the original equation of curve.

- Watch Video Solution

3. When the axes rotated through an angegle $\frac{\pi}{4}$, find the transformed equation of $3 x^{2}+10 x y+3 y^{2}=9$.

- Watch Video Solution

4. When the axes are rotated through an angle $\pi / 6$.

$$
\begin{aligned}
& \text { Find the transformed equation of } \\
& x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2} .
\end{aligned}
$$

D Watch Video Solution

5. When the axes are rotated through an angle α, find
the transformed equation of $x \cos \alpha+y \sin \alpha=p$.

- Watch Video Solution

6. When the axes are rotated through an angle 45°, the
transformed equation of a curve is
$17 x^{2}-16 x y+17 y^{2}=225$. Find the original equation of the curve.

- Watch Video Solution

Straight Lines Very Short Answer Type Questions

1. Find the value of x, if the slope of the line passing through (2,5) and ($x, 3$) is 2.

- Watch Video Solution

2. Find the value of y, if the line joining $(3, y)$ and $(2,7)$ is parallel to the line joining the points $(-1,4)$ and $(0,6)$.

(-) Watch Video Solution

3. Find the equation of the straight line passing through the points $\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right)$.

- Watch Video Solution

4. Find the equation of the straight line passing through $(-4,5)$ and cutting off equal intercepts on the coordinate axes.

- Watch Video Solution

5. Find the equation of the straight line passing through the point $(-2,4)$ and making intercepts whose sum is zero.

D Watch Video Solution

6. Transform the equation $\sqrt{3} x+y=4$ into slope intercept form

- Watch Video Solution

7. Transform the equation $\sqrt{3} x+y=4$ into
intercept form
8. Transform the equation $\sqrt{3} x+y=4$ into

Normal form

- Watch Video Solution

9. Transform the equation of $x+y+1=0$ into

Normal form

- Watch Video Solution

10. Find the equation of line parallel to $2 x+3 y+7=0$ and passing through $(5,4)$.

D Watch Video Solution

11. Find the equation of line perpendicular to $5 x-3 y+1$
$=0$ and passing through (4, -3).

D Watch Video Solution

12. The area of the triangle formed by the line $x \cos \alpha+y \sin \alpha=p$ with the coordinate axes is
13. Find the value of a it the area of the triangle formed by the liners $x=0, y=0,3 x+4 y=a$ is 6 sq units.

- Watch Video Solution

14. Find the value of p, if the lines $3 x+4 y=5,2 x+3 y$
$=4, p x+4 y=6$ are concurrent.

D Watch Video Solution

15. Find the value of p if the straight lines
$x+p=0, y+2=0,3 x+2 y+6=0 \quad$ are

- Watch Video Solution

16. Find the point of concurrence of the set of lines
$(2+5 k) x-3(1+2 k) y+(2-k)=0$

- Watch Video Solution

17. Find the the value of p if the straight lines
$3 x+7 y-1=0$ and $7 x-p y+3=0$ are mutually perpendicular.
18. Find the value of k if the angle between the straight $k x+y+9=0,3 x-y+4=0$ is $\pi / 4$

(D) Watch Video Solution

19. Find the distance between the parallel lines

$$
5 x-3 y-4=0,10 x-6 y-9=0
$$

- Watch Video Solution

Straight Lines Short Answer Type Questions

1. Transform the equation $\frac{x}{a}+\frac{y}{b}=1$ into normal form where $a>0, b>0$. If the perpendicular distance of the straight line from the Origin is p then deduce
that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

- Watch Video Solution

2. Find the value of k if the lines
$2 x-3 y+k=0,3 x-4 y-13=0,8 x-11 y-33=0$
are concurrent.

D Watch Video Solution

3. Find the equation of the line perpendicular to the line $3 x+4 y+6=0$ and making intercept -4 on X axis.

D Watch Video Solution

4. Find the equation of the straight line parallel to $3 x+4 y=7$ and passing through the point of intersection of the lines $x-2 y-3=0$ and $x+3 y-6=0$.
5. Find the equation of the line passing through the point of intersection of $2 x+3 y=1,3 x+4 y=6$ and perpendicular to the lines $5 x-2 y=7$

D Watch Video Solution

6. Find the equation of the straight line passing through the point of intersection of the lines $x+y+1=0$ and $2 x-y+5=0$ and containing the point $(5,-2)$.
7. Find the value of k if the angle between the straight lines $4 x-y+7=0, k x-5 y-9-0$ is 45°

- Watch Video Solution

8. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units from the point $(3,2)$.

- Watch Video Solution

9. Find the image of (1-2) in the line $2 x-3 y+5=0$.

Straight Lines Long Answer Type Questions

1. Find the circumcenter of the triangle whose vertices are $(-2,3),(2,-1),(4,0)$.

(D) Watch Video Solution

2. Find the circumcentre of the triangle whose vertices are $(1,3)(-3,5)$ and $(5,-1)$.

- Watch Video Solution

3. Find the circumcentre of the triangle whose vertices
are $(1,3)(0,-2)$ and $(-3,1)$.

D Watch Video Solution

4. Find the orthocentre of the triagle whose vertices are $(-2,-1)(6,-1),(2,5)$.

- Watch Video Solution

5. Find the orthocentre of the triangle whose vertices are $(5,-2),(-1,2),(1,4)$.

D Watch Video Solution

6. Find the orthocentre of the triangle whose vertices are $(-5,-7),(13,2),(-5,6)$

(D) Watch Video Solution

7. Find the circumcentre of the triangle whose sides are $3 x-y-5=0, x+2 y-4=0$ and $5 x+3 y+1=0$

(D) Watch Video Solution

8. Find the orthocentre of the triangle whose sides are
$7 x+y-10=0, x-2 y+5=0, x+y+2=0$
9. A : The foot of the perpendicular from $(3,4)$ on the
line $3 x-4 y+5=0$ is $(81 / 25,92 / 25)$
R : If (h, k) is the foot of the perpendicular from $\left(x_{1}, y_{1}\right)$
to the line $a x+b y+c=0$ then
$\frac{h-x_{1}}{a}=\frac{h-k_{1}}{b}=\frac{-\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}$

D Watch Video Solution

10. A : The image of the origin with respect to the line $x+y+1=0$ is $(-1,-1)$

R : If (h, k) is the image of $\left(x_{1}, y_{1}\right)$ with respect to the
line
$\frac{h-x_{1}}{a}=\frac{h-k_{1}}{b}=\frac{-2\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}$

(D) Watch Video Solution

Pair Of Straight Lines Long Answer Type Questions

1. If θ is the angle between the pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$, then prove that \cos
$\theta=\frac{|a+b|}{\sqrt{(a-b)^{2}+4 h^{2}}}$
2. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines
$a x^{2}+2 h x y+b y^{2}=0$ is $(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$

D Watch Video Solution

3. Show that the product of the perpendicular from

$$
\begin{aligned}
& \text { (alpha,beta) to the pair of lines } \\
& S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \\
& \frac{\left|a \alpha^{2}+2 h \alpha \beta+2 g \alpha+2 f \beta+c\right|}{\sqrt{(a-b)^{2}+4 h^{2}}} \text { Hence or otherwise }
\end{aligned}
$$

find the product of the perpendicular from the origin
4. Prove that the aea of the triangle formed by $y=x+c$ and the pair of lines $a x^{2}+2 h x y=b y^{2}=0$ is $\frac{e^{2} \sqrt{h^{2}-a b}}{|a+b+2 h|}$ sq. units.

- Watch Video Solution

$$
\text { 5. If } a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$ represents a pair of lines then prove that

$\triangle=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$.

- Watch Video Solution

6. $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two parallel lines then prove that $h^{2}=a b$.

(D) Watch Video Solution

7. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two parallel lines then prove that $h^{2}=a b$.

- Watch Video Solution

8.

If

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

represents two parallel lines then prove that $a f^{2}=b g^{2}$
9. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents two parallel lines then prove that the distance between the parallel lines is
$2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$ or $2 \sqrt{\frac{f^{2}-b c}{b(a+b)}}$.

- Watch Video Solution

10.

S.T
the
equation
$2 x^{2}-13 x y-7 y^{2}+x+23 y-6=0 \quad$ represents a
pair of straight lines. Also find the angle between them
and the coordinates of the point of intersection of the lines.

D Watch Video Solution

11. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and the line $3 x$ $y+1=0$.

- Watch Video Solution

12. Show that the lines joining the origin to the points
of intersection of the curve
$x^{2}+x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular.
13. Show that the lines joining the origin with the points of intersection of the curve $7 x^{2}-4 x y+8 y^{2}+2 x-4 y-8=0$ with the line $3 x-y=2$ are mutually perpendicular.

- Watch Video Solution

14. Find the value if k, if the lines joining the origin with
the points of intersection of the curve
$2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the $\mathrm{x}+2 \mathrm{y}=\mathrm{k}$ are mutually perpendicular .
15. Find the condition for the lines joining the originto the points of intersection of the circle $x^{2}+y^{2}=a^{2}$ and the line $l x+m y=1$ to coincide.

(D) Watch Video Solution

16. Find the condition for the chord $\mathrm{Ix}+\mathrm{my}=1$ of the circle $x^{2}+y^{2}=a^{2}$ to subtend a right angle at the origin.

(D) Watch Video Solution

3 D Coordinates Very Short Answer Type Questions

1. Find x if the distance between $(5,-1,7)$ and $(x, 5,1)$ is 9 units.

- Watch Video Solution

2. Show that the points $(1,2,3),(2,3,1)$ and $(3,1,2)$ form an equilateral triangle.

D Watch Video Solution

> 3. Show that the points
> $A=(1,2,3), B=(7,0,1), C=(-2,3,4) \quad$ are

- Watch Video Solution

4. For what value of t, the points $(2,-1,3),(3,-5, t)$ and
(-1,11,9) are collinear

D Watch Video Solution

5. Find the coordinates of the vertex ' C ' of $\triangle A B C$ if its centroid is the origin and the vertices A, B are $(1,1,1)$ are
$(-2,4,1)$ respectively.
(D) Watch Video Solution
6. If ($3,2,-1$) $(4,1,-1)$ and ($6,2,5$) are three vertices and (4,

2,2) is the centroid of a tetrahedron, then find the fourth vertex.

D Watch Video Solution

7. Find the ratio in which the XZ-plane divides line joining $A(-2,3,4)$ and $B(1,2,3)$

D Watch Video Solution

8. Find the fourth vertex of the parallelogram whose
$(2,4,-1),(3,6,-1)$ and $(4,5,1)$.

- Watch Video Solution

D C S And Dr S Long Answer Type Questions

1. Find the angle between the lines whose direction cosines satisfy the equaitons $l+m+n=0, l^{2}+m^{2}-n^{2}=0$.

- Watch Video Solution

2. Find the angle between the lines whose direction cosines are given by the equation $31+m+5 n=0$ and
$6 m n-2 n l+5 l m=0$

- Watch Video Solution

3. Find the direction cosines of the two lines which are connected by the relations $\mathrm{I}+\mathrm{m}+\mathrm{n}=0$ an $\mathrm{mn}-2 \mathrm{nl}-$ $2 \mathrm{~lm}=0$.

- Watch Video Solution

4. Find the direction cosines of the two lines which are
$l-5 m+3 n=0,7 l^{2}+5 m^{2}-3 n^{2}=0$
5. Show that the lines whose direction cosines are given by $l+m+n=0$,
$2 m n+3 n l-5 l m=0$ are perpendicular to each other
6. Find the angle between the diagonals of a cube .

- Watch Video Solution

7. If a line makes angles $\alpha, \beta, \lambda, \delta$ with the four diagonals of a cube, then show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \lambda+\cos ^{2} \delta=\frac{4}{3}$.

Plane Very Short Answer Type Questions

1. Write the equations of the plane
$4 x-4 y+2 z+5=0$ in the intercept form.

- Watch Video Solution

2. Find the intercepts of the plane
$4 x+3 y-2 z+2=0$ on the coordinate axes.

- Watch Video Solution

3. Find the equation of the plane which makes intercepts $1,2,4$ on the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ - axes respectively.

- Watch Video Solution

4. Reduce the equation $x+2 y-3 z-6=0$ of the plane to the normal form.

- Watch Video Solution

5. Find the direction cosines of the normal to the plane
$x+2 y+2 z-4=0$
6. Find the angle between the planes
$x+2 y+2 z-5=0$ and $3 x+3 y+2 z-8=0$

- Watch Video Solution

7. Find the angle between the planes $2 x-y+z=6$ and x $+y+2 z=7$.

D Watch Video Solution

8. Find the equation of the plane passing through the point $(1,1,1)$ and parallel to the plane
$x+2 y+3 z-7=0$

- Watch Video Solution

Limits And Continuity Very Short Answer Type Questions

1. Compute the limit of $L t_{x \rightarrow 3} \frac{x^{2}-8 x+15}{x^{2}-9}$

- Watch Video Solution

2. Compute $L t_{x \rightarrow 0} \frac{a^{x}-1}{b^{x}-1}(a>0, b>0, b \neq 1)$.

- Watch Video Solution

3. $\operatorname{lt}_{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$

- Watch Video Solution

4. Compute $\lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{\sqrt{1+x}-1}\right)$

(D) Watch Video Solution

5. Compute $L t_{x \rightarrow 0} \frac{3^{x}-1}{\sqrt{1+x}-1}$.

- Watch Video Solution

6. Compute $L t_{x \rightarrow 0} \frac{e^{3 x}-1}{x}$.

- Watch Video Solution

7. Compute the following limits
$L t_{x \rightarrow 0} \frac{\sin a x}{x \cos x}$

- Watch Video Solution

8. Compute $\underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{\sin a x}{\sin b x}\right) b \neq 0, a \neq b$

(D) Watch Video Solution

9. Compute the following limits
$L t_{x \rightarrow 0} \frac{1-\cos m x}{1-\cos n x}, N \neq 0$

- Watch Video Solution

10. Compute $\lim _{x \rightarrow a} \frac{\tan (x-a)}{x^{2}-a^{2}}(a \neq 0)$.

Watch Video Solution

11. Show that

$L t_{x \rightarrow a} \frac{\sin (x-a) \tan ^{2}(x-a)}{\left(x^{2}-a^{2}\right)^{3}}=\frac{1}{8 a^{3}}$

- Watch Video Solution

12. $\mathrm{lt}_{x \rightarrow 0} \frac{x \sin a-a \sin x}{x-a}$
13. Evaluate $L t_{x \rightarrow 0} \frac{e^{x}-\sin x-1}{x}$

- Watch Video Solution

14. Evaluate $L t_{x \rightarrow 3} \frac{e^{x}-e^{3}}{x-3}$

- Watch Video Solution

15. Compute the following limits
$L t_{x \rightarrow 0}\left[\frac{\cos a x-\cos b x}{x^{2}}\right]$
16. Compute the following limits
$L t_{x \rightarrow 0} \frac{\sin (a+b x)-\sin (a-b x)}{x}$

D Watch Video Solution

17. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+5 x+2}{2 x^{2}-3 x+1}=$

- Watch Video Solution

18. Evaluate $L t_{x \rightarrow \infty} \frac{11 x^{3}-3 x+4}{13 x^{3}-5 x^{2}-7}$
19. Evaluate the following limits.
$L t_{x \rightarrow \infty}(\sqrt{x+1}-\sqrt{x})$

- Watch Video Solution

20. Evaluate $L t_{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)$

- Watch Video Solution

21. Evaluate $L t_{x \rightarrow 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x}$

-
 Watch Video Solution

22. Evaluate $L t_{x \rightarrow 0} \frac{(1+x)^{1 / 8}-(1-x)^{1 / 8}}{x}$

D Watch Video Solution

23. $\mathrm{lt}_{x \rightarrow 0} \frac{2|x|}{x}+x+1$

(D) Watch Video Solution

24. Compute the following limits.
$L t_{x \rightarrow \infty} \frac{\sqrt{x^{2}+6}}{2 x^{2}-1}$

D Watch Video Solution

25. Find $L t_{x \rightarrow-\infty} \frac{5 x^{3}+4}{\sqrt{2 x^{4}+1}}$

- Watch Video Solution

Limits And Continuity Short Answer Type Questions

1. Is
f
given
$f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x^{2}-2 x-3} & \text { if } 0<x<5 \text { and } x \neq 3 \\ 1.5 & \text { if } x=3\end{array}\right.$,
continuous at the point 3.

- Watch Video Solution

2. Check the continuity of function defined $b y$
$f(x)=\left\{\begin{array}{ll}\frac{1}{2}\left(x^{2}-4\right) & \text { if } 0<x<2 \\ 0 & \text { if } x=2 \\ 2-\frac{8}{x^{3}} & \text { if } x>2\end{array}\right.$ at $\mathrm{x}=2$

D Watch Video Solution

3. Show that
$f(x)=\left\{\begin{array}{ll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{array}\right.$ where a and b are
real constants is continuous at $\mathrm{x}=0$.

- Watch Video Solution

4. Find the real constants a, b, so that the function f
given by $f(x)= \begin{cases}\sin x & \text { if } x \leq 0 \\ x^{2}+a & \text { if } 0<x<1 \\ b x+3 & \text { if } 1 \leq x \leq 3 \\ -3 & \text { if } x>3\end{cases}$
continuous on R.

(D) Watch Video Solution

5. If f is given by $f(x)=\left\{\begin{array}{ll}k^{2} x-k & \text { if } x \geq 1 \\ 2 & \text { if } x<1\end{array}\right.$ is a continuous function on R, then find k.
6. If $f(x)=1+x+x^{2}+\ldots \ldots \ldots \ldots+x^{100}$, then find $f^{\prime}(1)$.

(D) Watch Video Solution

2. If $f(x)=x e^{x} \sin x$ then find $f^{\prime}(x)$.

- Watch Video Solution

3. If $y=e^{2 x} \cdot \log (3 x+4)$ then find $\frac{d y}{d x}$.
4. Find the derviation of $f(x)=\sin (\log x)$

D Watch Video Solution

5. Find $f(x)=7^{3+3 x}(x>0)$, then find $f^{\prime}(x)$.

- Watch Video Solution

6. Find the derivative of $y=e^{\sin -1} x$.

- Watch Video Solution

7. Find the derivation of $y=e^{a \sin ^{-1} x}$

D Watch Video Solution

8. Find the derivation of $y=\frac{2 x+3}{4 x+5}$

- Watch Video Solution

9. If $\mathrm{f}(\mathrm{x})=x^{2} 2^{x} \log x$, find $\mathrm{f}^{\prime}(\mathrm{x})$

D Watch Video Solution

10. If $\mathrm{y}=\log (\sec \mathrm{x}+\tan \mathrm{x})$, find $\frac{d y}{d x}$
11. If $\mathrm{y}=\log [\sin (\log \mathrm{x})]$, find $\frac{d y}{d x}$

- Watch Video Solution

12. Find the derivation of $y=\sin ^{-1}(\cos x)$

D Watch Video Solution

13. Find the derivative of $\sin ^{-1}\left(3 x-4 x^{3}\right)$ with respect of 'x' .

D Watch Video Solution

14. Find the derivative of $\cos ^{-1}\left(4 x^{3}-3 x\right)$ w.r.to x .

- Watch Video Solution

15. Find the derivative of $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$

- Watch Video Solution

16. Find $\frac{d y}{d x}$ if $2 x^{2}-3 x y+y^{2}+x+2 y-8=0$.

- Watch Video Solution

17. Find the derivative of $\left[\cot ^{-1}\left(x^{3}\right)\right]^{2}$

D Watch Video Solution

18. If $y=\sec (\sqrt{\tan x})$, find $\frac{d y}{d x}$

- Watch Video Solution

19. Find the derivative of $\sin h^{-1}\left(\frac{3 x}{4}\right)$

D Watch Video Solution

20. If $x=a \cos ^{3} t, y=a \sin ^{3} t$, find $\frac{d y}{d x}$

Differentation Short Answer Type Questions

1. Find the derivative of $\sin 2 x$ from the first principle.

D Watch Video Solution

2. Find the derivative of $\cos a x$ from the first Principle.

- Watch Video Solution

3. Find the derivative of $\tan 2 x$ from the first principle.
4. Find the derivative of $\sec 3 x$ using first principle.

D Watch Video Solution

5. Find the derivative of $x \sin x$ from the first principle.

- Watch Video Solution

6. Find the derivative of $\cos ^{2} x$ from the first principle.

- Watch Video Solution

7. Find the derivative of $\cot x$ from the first principle.
8. $A:$ Ify $=x^{y}$ then $\frac{d y}{d x}=\frac{y^{2}}{x(1-\log y)}$

If

$$
y=f(x)^{y}
$$

then
$\frac{d y}{d x}=\frac{y^{2} f^{\prime}(x)}{f(x)[1-y \log f(x)]}=\frac{y^{2} f^{\prime}(x)}{f(x)[1-\log y]}$

D Watch Video Solution

9. If $x^{y}=e^{x-y}$ then $\frac{d y}{d x}=$

- Watch Video Solution

10. Differentiate $\frac{\tan ^{-1}(2 x)}{1-x^{2}}$ w.r.t $\sin ^{-1} \frac{2 x}{1+x^{2}}$.

- Watch Video Solution

11. IF $y-\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, find $\frac{d y}{d x}$.

- Watch Video Solution

12. $\mathrm{x}=\mathrm{a}(\cos \mathrm{t}+\mathrm{t} \sin \mathrm{t}), \mathrm{y}=\mathrm{a}(\sin \mathrm{t}-\mathrm{t} \cos \mathrm{t})$ find $\frac{d y}{d x}$.

- Watch Video Solution

13. If $y=a x^{n+1}+b x^{-n}$ then show that
$x^{2} y^{\prime \prime}=n(n+1) y$.

Differentation Long Answer Type Questions

1. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ then prove that $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$.

- Watch Video Solution

2. If $y=\tan (-1)\left(\frac{\sqrt{\left(1+x^{2}\right)}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)$
find $\frac{d y}{d x}$.

- Watch Video Solution

3. Find the derivative of $(\sin x)^{\log x}+x^{\sin x}$.

- Watch Video Solution

4. Find the derivative of $x^{\tan x}+(\sin x)^{\cos x}$ w.r.to x .

- Watch Video Solution

$$
\begin{aligned}
& \text { 5. If } x^{y}+y^{x}=a^{b} \quad \text { then prove that } \\
& \frac{d y}{d x}=-\left[\frac{y x^{y-1}+y^{x} \log y}{x^{y} \log x+x y^{x-1}}\right] .
\end{aligned}
$$

- Watch Video Solution

6. If $f(x)=\sin ^{-1} \sqrt{\frac{x-\beta}{\alpha-\beta}}, g(x)=\tan ^{-1} \sqrt{\frac{x-\beta}{\alpha-x}}$ then prove that $f^{\prime}(x)=g^{\prime}(x)$

- Watch Video Solution

7. If $y=x \sqrt{a^{2}+x^{2}}+a^{2} \log \left(x+\sqrt{a^{2}+x^{2}}\right)$, then show that $\frac{d y}{d x}=2 \sqrt{a^{2}+x^{2}}$.

(D) Watch Video Solution

Application Of Differenciation Very Short Answer Type Questions

1. Find Δy and dy for the function $y=x^{2}+x$, when $\mathrm{x}=10, \Delta x=0.1$

- Watch Video Solution

2. If $y=x^{2}+3 x+6$ then find $\triangle y$ and dy when $x=10, \triangle x=0.01$.

- Watch Video Solution

3. Find (Δy) and dy if $y=5 x^{2}+6 x+6, x=2$ and
$\Delta x=0.001$
4. Find the approximate value of $\sqrt{82}$

D Watch Video Solution

5. Find the approximate value of $\sqrt[3]{65}$

D Watch Video Solution

6. Find the approximate value of $\sqrt[3]{999}$
7. Find the approximate value of $\sqrt[4]{17}$

- Watch Video Solution

8. If the increase in the side of a square is 2% then find the approximate percentage of increase in the area of the square.

- Watch Video Solution

9. If the increase in the side of a square is 4% then find
the approximate percentage of increase in the area of the square.

Watch Video Solution

Tangents Normals Short Answer Type Questions

1. Find the equations of tangent and normal to the curve $\mathrm{xy}=10$ at $(2,5)$

- Watch Video Solution

2. Find the equation of tangent $\&$ normal to the curve

$$
y=5 x^{4} \text { at }(1,5)
$$

3. Find the equations of the tangent and the normal to the curve $y^{4}=a x^{3}$ at (a, a)

- Watch Video Solution

4. The equation of tangent to the curve
$\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ at the point (a, b) is

D Watch Video Solution

5. S.T the tangent at any point θ on the curve
$x=c \sec \theta, y=c \tan \theta$ is $y \sin \theta=x-\cos \theta$.

- Watch Video Solution

6. Find the lengths of subtangent and subnormal at a point on the curve $y=b \sin \left(\frac{x}{a}\right)$

- Watch Video Solution

7. Show that at any point (x, y) on the curve $y=b^{\frac{x}{a}}$, the length of the subtangent is a constant and the length of the subnormal is $\frac{y^{2}}{a}$.

D Watch Video Solution

8. Find the value of k, so that the length of the subnormal at any point on the curve $y=a^{1-k} x^{k}$ is a

- Watch Video Solution

9. S.T the curves $6 x^{2}-5 x+2 y=0,4 x^{2}+8 y^{2}=3$
touch each other at $\left(\frac{1}{2}, \frac{1}{2}\right)$.

- Watch Video Solution

Tangents Normals Long Answer Type Questions

1. IF the tangent at a point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ intersects the coordinate axes in A and B then show that the length $A B$ is a constant.

D Watch Video Solution

2. IF the tangent at any point P on the curve $x^{m} y^{n}=a^{m+n}, m n \neq 0$ meets the coordinate axes in A. B then show that $A P: B P$ is a constant.

D Watch Video Solution

3. Find the length of subtangent subnormal at a pont t on the curve $x=a(\cos t+\sin t) y=a(\sin t-t \cos t)$
4. At any point t on the curve $x=a(t+\sin t), y=a(1-\cos t)$, find the lengths of tangent, normal, subtangent and subnormal.

D Watch Video Solution

> 5. Find the angle between the curves
> $y^{2}=8 x$ and $4 x^{2}+y^{2}=32$

D Watch Video Solution

6. Find the angle between the curves $x y=2$ and $x^{2}+4 y=0$
7. S.T the curves $y^{2}=4(x+1), y^{2}=36(9-x)$ intersect orthogonally.

- Watch Video Solution

8. Show that the tangent at $P\left(x_{1}, y_{1}\right)$ on the curve
$\sqrt{x}+\sqrt{y}=\sqrt{a}$ is $x x_{1}^{\frac{-1}{2}}+y y_{1}^{\frac{-1}{2}}=a^{\frac{1}{2}}$

- Watch Video Solution

9. Find the condition for the orthogonality of the curves $a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$

- Watch Video Solution

Rate Measure Short Answer Type Questions

1. A particle is moving in a straight line so that after t seconds its distance is s (in cms) from a fixed point on
the line is given by $s=f(t)=8 t+t^{3}$. Find the velocity at time $\mathrm{t}=2 \mathrm{sec}$ (ii) the initial velocity can acceleration at $\mathrm{t}=2 \mathrm{sec}$
2. A particle is moving along a line according $s=f(t)=8 t+t^{3}$. Find the initial velocity

- Watch Video Solution

3. A particle is moving along a line according $s=f(t)=8 t+t^{3}$. Find acceleration at $\mathrm{t}=2 \mathrm{sec}$.

- Watch Video Solution

4. The distance-time formula for the motion of a particle along a straight line is $s=t^{3}-9 t^{2}+24 t-18$. Find when and where the velocity is zero.

D Watch Video Solution

5. A particle is moving along a line according $s=f(t)=4 t^{3}-3 t^{2}+5 t-1$ where s is measured in meters and t is measured in seconds. Find the velocity and acceleration at time t . At what time the acceleration is zero.

- Watch Video Solution

6. The displacement s of a particle travelling in a
straight line in t seconds is given by
$s=45 t+11 t^{2}-t^{3}$. Find the time when the particle comes to rest.

D Watch Video Solution

7. The volume of a cube is increasing at the rate of
$8 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the length of an edge is 12 cm ?

D Watch Video Solution

8. The volume of a cube is increasing at a rate of 8 cubie centimeters per second. How fast is the surface area increasing when the length of the edge is 12 cm ?
9. A stone is dropped into a quiet lake and ripples move in circles at the speed of $5 \mathrm{~cm} / \mathrm{sec}$. At the instant when the radius of circular ripple is 8 cm , how fast is the enclosed area increases?

D Watch Video Solution

10. A container is in the shape of an inverted cone has
height 8 m and radius 6 m at the top. If it is filled with water at the rate of $2 m^{3} /$ minute, how fast is the height of water changing when the level is 4 m ?

- Watch Video Solution

11. A balloon which always remains spherical on inflation is being inflated by pumping in 900 cubic centimeters of gas per second. Find the rate at which the radius of balloon increases when the radius in 15 cm.

D Watch Video Solution

Mean Value Theorem Very Short Answer Type Questions

1. Define Rolles mean value theorem.

- Watch Video Solution

2. State Lagrange's mean value theorem.

- Watch Video Solution

3. Verify Rolle's theroem for the function $x^{2}-1$ on
$[-1,1]$.

- Watch Video Solution

4. Verify Rolle's theorem for the function
$y=f(x)=x^{2}+4$ on $[-3,3]$

Watch Video Solution
5. Verify Rolle's theorem for the function $f(x)=x^{2}-5 x+6$ in the interval $[-3,8]$

- Watch Video Solution

6. Verify mean value theorem for the function $f(x)=x^{2}$ on $[2,4]$

- Watch Video Solution

7. Verify the conditions of Lagrange's mean value theorem for the function $x^{2}-1$ on $[2,3]$

Maxima Minima Long Answer Type Questions

1. The sum of two numbers is 16 . Find the numbers so that the sum of square is minimum.

D Watch Video Solution

2. Find the positive integers x and y such that $x+y=60$ and $\quad x y^{3}$ is maximum.

- Watch Video Solution

3. Find the maximum area of the rectangle that can be formed with fixed perimeter 20.

- Watch Video Solution

4. From a rectangular sheet of dimension $30 \mathrm{~cm} \times 80 \mathrm{~cm}$, four equal squares of side $\times \mathrm{cm}$. are removed at the corners, and the sieds are then turned up so as to form an open rectangular box.

Find the value of x, so that the volume of the box is the greatest.

D Watch Video Solution

5. A window is in the shap of a rectangle surmounted by a semicircle. If the perimeter of the window is 20 ft , find the maximum area.

D Watch Video Solution

6. A wire of length I is cut into two parts which are bent respectively in the form of a square and a circle. What are the lengths of pieces of wire so that the sum of areas is least?

- Watch Video Solution

7. Show that when the curved surface of a is right circular cylinder inscribed in a sphere of radius R is maximum , then the height of the cylinder is $\sqrt{2 R}$.
8. The profit function $\mathrm{P}(\mathrm{x})$ of a company selling x items per day is given by $P(x)=(150-x) x-1000$. Find
the number of items that the company should manufacture to get maximum profit. Also find the maximum profit.
