©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS

(HINGLISH)

Heights and Distances

Example

1. A ladder rests against a wall at an angle α to
the horizontal, its foot is pulled away from the
wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal. Show that $a=b \frac{\tan 1}{2}(\alpha+\beta)$.

D Watch Video Solution

2. A two metre long object is fired vertically upwards from the mid point of two locations A and $B, 8 m$ apart. The speed of the object after t second is given by $\frac{d s}{d t}=2 t+1 \frac{m}{s}$. Let α and β be theangle subtended by the object
at A and B, respectively after one and two
seconds. Find the value $\cos (\alpha-\beta)$

D Watch Video Solution

3. A vertical tower 50 ft high stands on a sloping groud. The foot of the tower is at the same level as the middle point of a vertical flag pole. From the top of the tower the angle of depression of the top and the bottom of the pole are 15° and 45° respectively. Find the length of the pole.

Watch Video Solution

4. A flagstaff stands on the top of a vertical tower. It is found that the flagstaff subtends the same angle alpha at two points , 2d apart, on a straight line through the base of the tower on the horizontal plane. Also the flagstaff subtends an angle beta at the midpoint of these two points find the value of
5. A person standing by the side of a road observes a row of equidistant telephone poles of equal height.Neglecting the height of the persons eye,the 10th and 17th poles subtend the same angle that they would do if they were in the position of the first pole and were respectively $1 / 2$ and $1 / 3$ of their height.find correct to one place of decimal,the secant of the angle between the base lines of the poles and the line drawn from the persons eye to the base of the first pole.
6. An observer at an anti air craft post A identifies an enemy aircraft due East of his post at an angle of elevation of 60°. At the same instant a detection post $D 4 \mathrm{kms}$ south of

A reports the aircraft at an elevation of 30°.
Calculate the altitude at which the plane is flying.

D Watch Video Solution

7. $P Q$ is a vertical tower having P as the foot.
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three points in the horizontal plane through P. The angles of elevation of Q from
A, B, C are equal and each is equal to θ. The sides of the triangle ABC are a, b, c, and area of the triangle $A B C$ is . Then prove that the height of the tower is $(\mathrm{abc}) \frac{\tan \theta}{4}$.
8. A person standing on the ground observes
the angle of elevation of the top of a tower to
be 30° On walking a distance a in a certain direction, he finds the elevation of the top to
be same as before. He then walks a distance 5 $\frac{5}{3} a$ at right angles to his former direction, and finds that the elevation of the top has doubled. The height of the tower is

Watch Video Solution

9. $A B C$ is a triangular park with
$A B=A C=100 \mathrm{~m} . \quad \mathrm{A}$ Television tower
stands at the mid point of $B C$. The angles of elevations of the top of tower at A, B, C are
$45^{\circ}, 60^{\circ}, 60^{\circ}$ respectively Then the height of tower is

D Watch Video Solution

Exercise

1. A 10 meters high tower is standing at the centre of an equilateral triangle and each side of the triangle subtends an angle of 60° at the top of the tower. Then the length of each side of the triangle is.

D Watch Video Solution

2. An electric pole stands at the vertex A of the equilateral triangular field and subtends an angle 60° at either of the remaining vertices.

If the altitude of the field is 50 meters, the height of the pole is

D Watch Video Solution

3. A pole on the ground leans 60° to the vertical. At a point a meters away from the base of the pole on the ground, the two halves of the pole subtend the same angle. If the pole and the point are in the same vertical plane, the length of the pole is
\square
