

MATHS

NCERT - NCERT Maths(KANNADA)

POLYNOMIALS

1. Find the number zeroes of the given polynomials. And also find their values. p(x) = 2x + 1

2. Find the number zeroes of the given polynomials. And also find their values. $q(y) = y^2 - 1$

3. Find the number zeroes of the given polynomials. And also find their values.

$$r(z)=z^3$$

4. Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$, and verify the relationship between the zeroes and the coefficients.

5. Find the zeroes of the polynomial $x^2 - 3$ and verify the relationship between the zeroes and the coefficients.

Watch Video Solution

6. Find a quadratic polynomial, the sum and product of whose zeroes are -3 and 2 respectively.

Watch Video Solution

7. Find the quadratic polynomial whose zeroes are 2 and $\frac{-1}{3}$

8. Verify whether 3, -1 and $-\frac{1}{3}$ are the zeroes of the cubic polynomial $p(x) = 3x^3 - 5x^2 - 11x - 3$, and then verify the relationship between the zeroes and the coefficients.

2. State which of the following are polynomials

and which are not ? Give reasons.

$$rac{1}{x}-1(x
eq 0)$$

3. State which of the following are polynomials

and which are not ? Give reasons.

$$4z^2+rac{1}{7}$$

4. State which of the following are polynomials

and which are not ? Give reasons.

$$m^2-\sqrt{2}m+2$$

Watch Video Solution

5. State which of the following are polynomials

and which are not ? Give reasons.

$$p^{-2} + 1$$

6. If $p(x) = x^2 - 5x - 6$, then find the values of

p(1), p(2), p(3), p(0), p(-1), p(-2), p(-3)

Watch Video Solution

7. If
$$p(m) = m^2 - 3m + 1$$
, then find the value

of p(1) and p(-1).

8. Let $p(x) = x^2 - 4x + 3$. Find the value of p(0), p(1), p(2), p(3) and obtain zeroes of the polynomial p(x).

9. Check whether -3 and 3 are the zeroes of

the polynomial $x^2 - 9$.

10. Draw the graph of (i) y = 2x + 5, (ii) y = 2x - 5, (iii) y = 2x and find the point of intersection on X - axis Is the x-coordinate of these points also the zeroes of the polynomial ?

Watch Video Solution

11. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship

to the coeffcients of terms of terms in the polynomial.

$$p(x) = x^2 - x - 6$$

Watch Video Solution

12. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship to the coeffcients of terms of terms in the polynomial.

$$p(x) = x^2 - 4x + 3$$

13. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship to the coeffcients of terms of terms in the polynomial.

$$p(x) = x^2 - 4$$

14. Find the zeroes of the quadratic polynomials given below. Find the sum and product of the zeroes and verify relationship to the coeffcients of terms of terms in the polynomial.

 $p(x) = x^2 + 2x + 1$

1. Write 3 different quadratic, cubic and 2 linear polynomials with different number of terms.

2. Write the general form of a quadratic polynomial and cubic polynomial in variable x.

3. Write three quadratic polynomials that have

2 zeroes each.

Watch Video Solution

4. Write one quadratic polynomial that has

one zero.

5. How will you verify if a quadratic polynomial

has only zero ?

Watch Video Solution

6. Write three quadratic polynomials that have

no zeroes.

7. Find the zeroes of cubic polynomials (i) $-x^3$ (ii) $x^2 - x^3$ (iii) $x^3 - 5x^2 + 6x$ without drawing the graph of the polynomial.

9. What is the quadratic polynomial the sum of

whose zeroes id $\frac{-3}{2}$ and the product of the

zeroes is -1

Watch Video Solution

Exercise 31

1. In
$$p(x) = 5x^7 - 6x^5 + 7x + 6$$
, what is the
(i) coefficient of x^5 (ii) degree of $p(x)$ (iii)
consstant term.

2. State which of the following statements are true and which are false ? Give reasons for your choice.

The degree of the polynomial $\sqrt{2}x^2 - 3x + 1$

Watch Video Solution

3. Check whether 3 and -2 are the zeroes of the polynomial p(x) when $p(x) = x^2 - x - 6$.

Watch Video Solution

Exercise 3 2

1. Find the zeroes of the given polynomials.

$$p(x) = 3x$$

Watch Video Solution

2. Find the zeroes of the given polynomials.

$$p(x) = x^2 + 5x + 6$$

3. Find the zeroes of the given polynomials.

$$p(x)=(x+2)(x+3)$$

Watch Video Solution

4. Find the zeroes of the given polynomials.

$$p(x) = x^4 - 16$$

5. Draw the graphs of the given polynomial

and find the zeroes. Justify the answers.

$$p(x) = x^2 - x - 12$$

Watch Video Solution

6. Why are
$$rac{1}{4}$$
 and -1 zeroes of the polynomials $p(x)=4x^2+3x-1$?

1. (i)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $x^2 - 2x - 8$ (ii)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4s^2 - 4s + 1$

(iii)(Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

 $6x^2 - 3 - 7x$)

(iv)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4u^2 + 8u$ (v)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $t^2 - 15$ (vi)Find the zeroes of the following quadratic

polynomials and verify the relationship

between the zeroes and the coefficients.

 $3x^2 - x - 4$

2. (i)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

 x^2-2x-8

(ii)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

 $4s^2 - 4s + 1$

(iii)(Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $6x^2 - 3 - 7x$)

(iv)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4u^2 + 8u$ (v)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $t^2 - 15$ (vi)Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients.

 $3x^2 - x - 4$

3. (i)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $x^2 - 2x - 8$

(ii)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4s^2 - 4s + 1$

(iii)(Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients.

$$6x^2 - 3 - 7x$$
)

(iv)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4u^2 + 8u$ (v)Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients.

 $t^2 - 15$

(vi)Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients.

$$3x^2 - x - 4$$

Watch Video Solution

4. (i)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

 x^2-2x-8

(ii)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4s^2 - 4s + 1$

(iii)(Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $6x^2 - 3 - 7x$)

(iv)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4u^2 + 8u$

(v)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

 $t^2 - 15$

(vi)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $3x^2 - x - 4$

Watch Video Solution

5. (i)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $x^2 - 2x - 8$

(ii)Find the zeroes of the following quadratic

polynomials and verify the relationship between the zeroes and the coefficients. $4s^2 - 4s + 1$ (iii)(Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $6x^2 - 3 - 7x$) (iv)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4u^2 + 8u$ (v)Find the zeroes of the following quadratic polynomials and verify the relationship

between the zeroes and the coefficients.

 $t^2 - 15$

(vi)Find the zeroes of the following quadratic

polynomials and verify the relationship

between the zeroes and the coefficients.

$$3x^2 - x - 4$$

6. (i)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

 $x^2 - 2x - 8$

(ii)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $4s^2 - 4s + 1$ (iii)(Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $6x^2 - 3 - 7x$)

(iv)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

 $4u^2 + 8u$

(v)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $t^2 - 15$ (vi)Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $3x^2 - x - 4$

7. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

$$\frac{1}{4}, -1$$

Watch Video Solution

8. Find a quadratic polynominal each with the given numbers as the sum and product of its

zeroes respectively.

$$-rac{1}{4},rac{1}{4}$$

9. Find a quadratic polynominal each with the given numbers as the sum and product of its zeroes respectively.

4, 1

Watch Video Solution

Exercise 3 4

1. Divide p(x) by g(x) and find the quotient and remainder : $p(x) = x^4 - 5x + 6, g(x) = 2 - x^2$ Watch Video Solution

2. Check whether the first polynomial is a factor of the second polynomial by dividing : $t^2 - 3$, $2t^4 + 3t^3 - 2t^2 - 9t - 12$

3. Check whether the first polynomial is a factor of the second polynomial by dividing : $x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$ Watch Video Solution

4. Check whether the first polynomial is a factor of the second polynomial by dividing :

$$x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$

5. Obtain all other zeroes of
$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$
, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$
Watch Video Solution

6. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

7. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

 $\deg q(x) = \deg r(x)$

Watch Video Solution

8. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

 $\deg r(x) = 0$

Optional Exercise For Extensive Learning

1. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

