

CHEMISTRY

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

CHEMICAL EQUILIBRIUM AND ACIDS BASES

Solved Problems

1. The following concentrations were obtained for the formation of NH_3 from N_2 and H_2 at equilibrium at 500K. $[N_2] = 1.5 \times 10^{-2}M$. $[H_2] = 3.0 \times 10^{-2}$ M and $[NH_3] = 1.2 \times 10^{-2}M$. Calculate equilibrium constant.

2. At equilibrium , the concentrations of $N_2=3.0 imes10^{-3}M$, $O_2=4.2 imes10^{-3}M$ and $NO=2.8 imes10^{-3}M$ in a sealed vessel at 800K. What will be K_c for the reaction $N_2(g)+O_2(g)\Leftrightarrow 2NO(g)$

Watch Video Solution

3. PCl_5 , PCl_3 and Cl_2 are at equilibrium at 500K and having concentration $1.59MPCl_3$, $1.59MCL_2$ and $1.41MPCl_5$. Calculate K_c for the reaction $PCl_5 \Leftrightarrow PCl_3 + Cl_2$

Watch Video Solution

4. The value of $K_c=4.24$ at 800K for the reaction, $CO(g)+H_2O(g)\Leftrightarrow CO_2(g)+H_2(g)$

Calcualte equilibrium concentrations of CO_2 , H_2 , CO and H_2O at 800K, if only CO and H_2O are present initially at concentrations of 0.1M each. 5. For the equilibrium , $2NOCl(g) \Leftrightarrow 2NO(g) + Cl_2(g)$ the value of the equilibrium constant, K_c is 3.75×10^{-6} at 1069K. Calculate the K_p for the reaction at this temperature ?

Watch Video Solution

6. The value of K_p for the reaction, $CO_2(g) + C(s) \Leftrightarrow 2CO(g)$ is 3.0 at 1000K. If initially $P_{CO_2} = 0.48$ bar and $P_{CO} = 0$ bar and pure graphite is present, calculate the equilibrium partial pressures of CO and CO_2 .

Watch Video Solution

7. The value of K_c for the reaction $2A \Leftrightarrow B + C$ is $2 imes 10^{-3}$. At a given

time, the composition of reaction mixture is $[A] = [B] = [C] = 3 \times 10^{-4} M$. In which direction the reaction will proceed ?

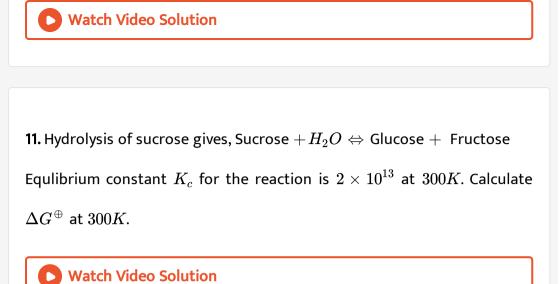
8. 13.8g of N_2O_4 was placed in a 1L reaction vessel at 400K and allowed

to attain equilibrium

 $N_2O_4(g) \Leftrightarrow 2NO_2(g)$

The total pressure at equilibrium was found to be $9.15~{
m bar}$. Calcualate K_c

, K_p and partial pressure at equilibrium.



9. $3.00 \text{ mol of } PCl_5$ kept in 1L closed reaction vessel was allowed to attain equilibrium at 380K. Calculate composition of the mixture at equilibrium $K_c = 1.80$

10. The value of ΔG^{Θ} for the phosphorylation of glucose in glycolysis is

13.8 kJ/mol. Find the value of Kc at 298 K.

12. What will be the conjugate bases of the following Bronsted acids: HF, H_2SO_4 and HCO_3^- ?

Watch Video Solution

13. Write the conjugate acids for the following Bronsted bases: NH_2^- , NH_3 and $HCOO^-$:

14. The species: H_2O , HCO_3^- , HSO_4^- and NH_3 can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and conjugate base.

15. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.

a. $OH^{\,-}$ b. $F^{\,-}$ c. $H^{\,+}$ d. BCl_3

16. The concentration of hydrogen ion in a sample of soft drink is $3.8 imes 10^{-3} M$. What is its pH?

17. Calculate pH of a $1.0 imes 10^{-8}$ M solution of HCl.

18. The ionization constant of HF is 3.2×10^{-4} . Calculate the degree of dissociation of HF in its 0.02M solution. Calculate the concentration of all species present (H_3O^+ , F^- and HF) in the solution and its pH.

Watch Video Solution

19. The pH of 0.1M monobasic acid is 4.50. Calculate the concentration of species H^+ .

 A^- and HA at equilibrium . Also, determine the value of K_a and pK_a of the monobasic acid.

20. Calculate the pH of 0.08M solution of hypochlorous acid, HOCl. The ionization constant of the acid is 2.5×10^{-5} . Determine the percent dissociation of HOCl.

21. The pH of 0.004M hydrazine solution is 9.7. Calculate its ionization constant K_b and pK_b .

Watch Video Solution

22. Calculate the pH of the solution in which $0.2MNH_4Cl$ and

 $0.1MNH_3$ are present. The pK_b of ammonia solution is 4.75.

23. Determine the degree of ionization and pH of 0.05M of ammonia solution. The ionization constant of ammonia can be taken from Table 7.7 . Also, calculate the ionization constant of the conjugate acid of ammonia.

24. Calculate the pH of 0.10M ammonia solution. Calcualte the pH after 50.0mL of this solution is treated with 25.0mL of 0.10MHCl. The dissociation constant of ammonia, $K_b = 1.77 \times 10^{-5}$.

Watch Video Solution

25. The pK_a of acetic acid and pK_b of ammonium hydroxide are 4.76 and

4.75 respectively. Calculate the pH of ammonium acetate solution.

26. Calculate the solubility of A_2X_3 is pure water, assuming that neither kind of ion racts with water. The solubility product of $A_2X_3, K_{sp}=1.1 imes10^{-23}$

27. The values of K_{sp} of two sparingly soluble salts $Ni(OH)_2$ and AgCN are 2.0×10^{-15} and 6×10^{-17} respectively. Which salt is more soluble ? Explain .

Watch Video Solution

28. Calculate the molar solubility of $Ni(OH)_2$ in 0.10MNaOH. The ionic

product of $Ni(OH)_2$ is 2.0×10^{-15}

1. Mole of PCl_5 is heated in a closed vessel of 1 litre capacity. At equilibrium 0.4 moles of chlorine is found. Calculate the equilibrium constant.

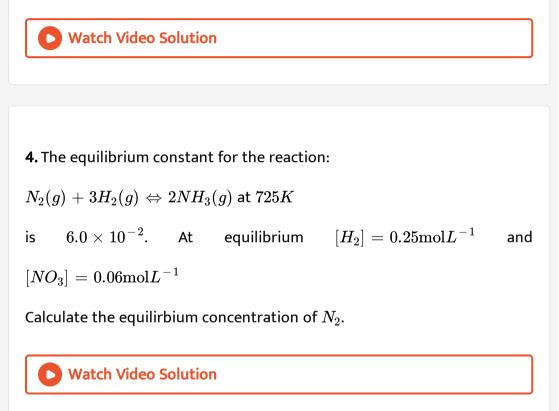
Watch Video Solution

2. Nitrogen dioxide froms dinitrogen tetroxide according to the equation $2NO_2(g) \Leftrightarrow N_2O_4$ (g) when 0.1 mole of NO_2 is added to a 1 litre flask at $25^{\circ}C$, the concentration changes so that at equilibrium $[NO_2] = 0.016M$ and $[N_2O_4] = 0.042M$.

a. What is the value of the reaction Quotient before any reaction occurs.

b. What is the value of the equilibrium constant for the reaction.

Watch Video Solution


3. Nitrogen dioxide froms dinitrogen tetroxide according to the equation

 $2NO_2(g) \Leftrightarrow N_2O_4$ (g) when 0.1 mole of NO_2 is added to a 1 litre flask at

 $25\,^\circ C$, the concentration changes so that at equilibrium $[NO_2]=0.016M$ and $[N_2O_4]=0.042M.$

a. What is the value of the reaction Quotient before any reaction occurs.

b. What is the value of the equilibrium constant for the reaction.

5. At certain temperature K_c for the reactioni.

 $SO_2(g) + NO_2(g) \Leftrightarrow SO_3(g) + NO(g)$ is 16. If initially one mole each of all the four gases are taken in one litre vessel, what are the equilibrium concentrations of NO and NO_2 ? **6.** Under certain conditions, the equilibrium constant for the decomposition of $PCl_5(g)$ into $PCl_3(g)$ and $Cl_2(g)$ is 0.0211mol L^{-1} . What are the equilibrium concentrations of PCl_5 , PCl_3d and Cl_2 if the initial concentration of PCl_5 was 1.00M?

Watch Video Solution

7. For the reactions $A+B \Leftrightarrow 3C$ at $25^{\,\circ}C$, a 3 litre vessel contains 1,2,4

mole of A, B and C respectively predict the direction of reaction if

- a. K_c for the reaction is 10
- b. K_c for the reaction is 15
- c. K_c for the reaction is 10.66

8. For the reactions $A + B \Leftrightarrow 3C$ at $25^{\circ}C$, a 3 litre vessel contains 1,2,4 mole of A, B and C respectively predict the direction of reaction if a. K_c for the reaction is 10 b. K_c for the reaction is 15 c. K_c for the reaction is 10.66 Watch Video Solution

9. For the reactions $A+B \Leftrightarrow 3C$ at $25^{\,\circ}C$, a 3 litre vessel contains 1,2,4

mole of A, B and C respectively predict the direction of reaction if

- a. K_c for the reaction is 10
- b. K_c for the reaction is 15
- c. K_c for the reaction is 10.66

10. A mixture of H_2, N_2 and NH_3 with molar concentration $5.0 \times 10^{-3} \text{mol}L^{-1}, 4.0 \times 10^{-3} \text{mol}L^{-1}$ and $2.0 \times 10^{-3} \text{mol}L^{-1}$ respectively was prepared and heated to 500K. The value of K_c for the reaction:

 $3H_2(g)+N_2(g)\Leftrightarrow 2NH_3(g)$ at this temperature is 60. Predict whether ammonia tends to form or decompose at this stage of concentration.

11. At $500K, K_p$ value for the reaction

 $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g)$ is $2.5 imes 10^{10}$.

Find the value of K_p for each of followign reactions at the same temperature.

a.
$$SO_2(g) + 1/2O_2(g) \Leftrightarrow SO_3(g)$$

 $\mathsf{b}.\,SO_3(g) \Leftrightarrow SO_2(g) + 1/2O_2(g)$

 $\mathsf{c.}\, 3SO_2(g) + 3/2O_2(g) \Leftrightarrow 3SO_3(g)$

Watch Video Solution

12. At $500K, K_p$ value for the reaction

 $2SO_2(g)+O_2(g) \Leftrightarrow 2SO_3(g)$ is $2.5 imes 10^{10}.$

Find the value of K_p for each of followign reactions at the same temperature.

a. $SO_2(g) + 1/2O_2(g) \Leftrightarrow SO_3(g)$ b. $SO_3(g) \Leftrightarrow SO_2(g) + 1/2O_2(g)$ c. $3SO_2(g) + 3/2O_2(g) \Leftrightarrow 3SO_3(g)$

Watch Video Solution

13. At $500K, K_p$ value for the reaction

 $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g) ext{ is } 2.5 imes 10^{10}.$

Find the value of K_p for each of followign reactions at the same temperature.

a. $SO_2(g) + 1/2O_2(g) \Leftrightarrow SO_3(g)$

 $\mathsf{b.}\,SO_3(g) \Leftrightarrow SO_2(g) + 1/2O_2(g)$

 $\mathsf{c.}\, 3SO_2(g) + 3/2O_2(g) \Leftrightarrow 3SO_3(g)$

14. K_c for the reaction $N_2O(g) \Leftrightarrow 2NO_2(g)$ is 4.63×10^{-3} at 25^2C .

a. What is the value of K_p at this temperature?

b. At $25\,^\circ C$, if the partial pressure of $N_2O_4(g)$ at equilibrium is 0.2 atm, calculate equilibrium pressure of $NO_2(g)$

Watch Video Solution

15. K_c for the reaction $N_2O(g) \Leftrightarrow 2NO_2(g)$ is 4.63×10^{-3} at 25^2C .

a. What is the value of K_p at this temperature?

b. At $25^{\circ}C$, if the partial pressure of $N_2O_4(g)$ at equilibrium is 0.2 atm,

calculate equilibrium pressure of $NO_2(g)$

Watch Video Solution

16. At $27^{\circ}C, K_p$ value for the reversible reaction $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$ is 0.65, calculate K_c .

17. K_c for the reaction

 $N_2(g) + 3H_2(g) \Leftrightarrow 2N_3(g)$ is 0.5 at 400K find K_p

18. 1 mole of A and 1 mol3 of B are taken in a 5 litre flask, 0.5 mole of c is formed in the equilibrium of

 $A + B \Leftrightarrow C + D$

What is molar concentration of each species if the reaction is carried with

2 mole A, 1 mole of B in a 5 litre flask at the same temperature.

Watch Video Solution

19. For the following reaction

 $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)0.4$ mole of Cl_2 are taken in a 1 litre flask.

If $K_c = 0.2$ predict the direction in which reaction proceeds.

20. In an equilibrium $A + B \Leftrightarrow C + D$, A and B are mixed in a vessel at temperature T. The initial concentration of A was twice the initial concentration of B. After the attainment of equilibrium, concentration of C was thrice concentration of B, calculate K_c .

Watch Video Solution

21. A mixture of SO_2 , SO_3 and O_2 gases are maintained at equilibrium in 10 litre flask at a temperature at which K_c for the reaction $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g)$ is 100. At equilibrium.

a. If no of moles of SO_3 and SO_2 is flask are same, how many moles of O_2 are present.

b. If no. of moles of SO_3 in flask is twice the no. of moles SO_2 how many moles of O_2 are present.

22. A mixture of SO_2 , SO_3 and O_2 gases are maintained at equilibrium in 10 litre flask at a temperature at which K_c for the reaction $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g)$ is 100. At equilibrium.

a. If no of moles of SO_3 and SO_2 is flask are same, how many moles of O_2 are present.

b. If no. of moles of SO_3 in flask is twice the no. of moles SO_2 how many moles of O_2 are present.

23. For $A + B \Leftrightarrow C$, the equilibrium concentrations of A and B at a temperature are $15 \text{mol}L^{-1}$. When volume is doubled the reaction has equilibrium concentration of A is $10 \text{mol}L^{-1}$. Calculate

a. K_c

b concentration of C in original equilibrium.

24. For $A + B \Leftrightarrow C$, the equilibrium concentrations of A and B at a temperature are $15 \text{mol}L^{-1}$. When volume is doubled the reaction has equilibrium concentration of A is $10 \text{mol}L^{-1}$. Calculate

a. K_c

b concentration of C in original equilibrium.

Watch Video Solution

25. A vessel at 100K contains CO_2 with a pressure of 0.5 atm. Some of

the CO_2 is converted into CO on addition of graphite. Calculate the value

of K if total pressure at equilibrium is 0.8 atm.

Watch Video Solution

26. The K_p values for the reaction

 $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$ at $460^\circ C$ is 49. If the initial pressure of H_2 and I_2 are 0.5 atm respectively, determine the partial pressure of each gases at equilibrium. **27.** 0.5 mol of H_2 and 0.5 mole of I_2 react in 10 litre flast at $448^{\,\circ}C$. The equilibrium constant K_c is 50 for

 $H_2(g)+I_2(g) \Leftrightarrow 2HI(g)$

- a. What is the value of K_p
- b. Calculate mole of I_2 at equilibrium.

Watch Video Solution

28. 0.5 mol of H_2 and 0.5 mole of I_2 react in 10 litre flask at $448^\circ C$. The

equilibrium brium constant K_C is 50 for

 $H_2(g)I_2(g) \Leftrightarrow 2HI(g)$

Calcualte mole of I_2 at equilibrium.

29. How much PCl_5 must be added to a one litre vesel at $250^{\circ}C$ in order to obtain concentration of 0.1 mole of Cl_2 at equilibrium K_C for $PCl_5(g) \Leftrightarrow PCl_{3(g) + Cl_2}$ is 0.0414M

30. K_p for the reaction

 $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$ at $400^2 C$ is $1.64 imes 10^{-4}$

a. Calculate K_c d

b. Calculate ΔG° value of K_c value.

Watch Video Solution

31. K_p for the reaction

 $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$ at $400^2 C$ is $1.64 imes 10^{-4}$

a. Calculate K_c d

b. Calculate ΔG° value of K_c value.

- 32. Calculate pH of
- a. $10^{-3}MHCl$
- b. $10^{-3}MH_2HO_4$
- c. $10^{-6}MHNO_3$
- $\mathsf{d.}\, 0.02 M H_2 SO_4$

Watch Video Solution

- 33. Calculate pH of
- a. $10^{-3}MHCl$
- b. $10^{-3}MH_2HO_4$
- c. $10^{-6}MHNO_3$
- $\mathsf{d.}\, 0.02 M H_2 SO_4$

34. Calculate pH of

- a. $10^{-3}MHCl$
- b. $10^{-3}MH_2HO_4$
- c. $10^{-6}MHNO_3$
- $\mathsf{d.}\, 0.02 M H_2 SO_4$

Watch Video Solution

35. Calculate pH of a. $10^{-3}MHCl$ b. $10^{-3}MH_2HO_4$ c. $10^{-6}MHNO_3$ d. $0.02MH_2SO_4$ A. a. 1.7 B. b. 1.4 C. c. 2 D. d. 4

Answer:

Watch Video Solution

36. Calculate the pH for

a. 0.001 MNaOH

b. $0.01MCa(OH)_2$

c. 0.0008 $MBa(OH)_2$

 $\mathsf{d.}\, 0.004 MNaOH$

Watch Video Solution

37. Calculate the pH for

a. 0.001 MNaOH

b. $0.01MCa(OH)_2$

c. 0.0008 $MBa(OH)_2$

 $\mathsf{d.}\, 0.004 MNaOH$

38. Calculate the pH for

a. 0.001 MNaOH

b. $0.01MCa(OH)_2$

c. $0.0008MBa(OH)_2$

 $\mathsf{d.}\, 0.004 MNaOH$

Watch Video Solution

39. Calculate the pH for

a. 0.001 MNaOH

b. $0.01MCa(OH)_2$

c. $0.0008MBa(OH)_2$

 $\mathsf{d.}\, 0.004 MNaOH$

Watch Video Solution

40. The pH of a solution is 3.6. Calculate H_3O^+ ion concentration.

41. The pH of a solution is 8.6. Calculate the OH^- ion concentration

pH = 8.6

pOH = 5.4

 $-\logig[OH^{\,-}ig] = 10^{-5.4}$ $ig[OH^{\,-}ig] = 10^{-6} imes 10^{0.6} = 10^{-6} imes$ anto log 0.6 $ig[OH^{\,-}ig] = 3.98 imes 10^{-6}$

Watch Video Solution

42. What is $[H^+]$ for a solution in which

a. pH=3 b. pH=4.75 c. pH=4.4?

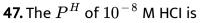
43. What is $[H^+]$ for a solution in which

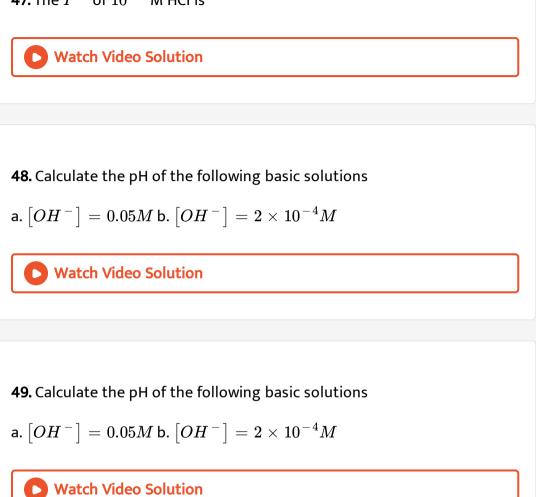
a. pH=3 b. pH=4.75 c. pH=4.4?

44. What is $\left[H^{\,+}
ight]$ for a solution in which

a. pH=3 b. pH=4.75 c. pH=4.4?

Watch Video Solution


45. A solutioin of 0.005 MH_2SO_4 is diluted 100 times. Calculate the pH of


diluted solution.

Watch Video Solution

46. A solution of HCl has a pH=3. If one ml of it is diluted to 1 litre, what

will be the pH of the resulting solution?

50. 2g of NaOH is dissolved in water to give 1 litre solutioin. What is the

pH of the solution?

51. Calculate the pH of the following solutions.

a. 0.37g fo $Ca(OH)_2$ dissolved in water to give 500 ml solution

b. 0.3 g of NaOH dissolved in water to give 200 ml solution

c. 0.1825% HCl aqueous solution

d. 1 ml of 13.6 M HCl is diluted with water to give 1 litre solution.

Watch Video Solution

52. Calculate the pH of the following solutions.

a. 0.37g fo $Ca(OH)_2$ dissolved in water to give 500 ml solution

b. 0.3 g of NaOH dissolved in water to give 200 ml solution

c. 0.1825% HCl aqueous solution

d. 1 ml of 13.6 M HCl is diluted with water to give 1 litre solution.

53. Calculate the pH of the following solutions.

a. 0.37g fo $Ca(OH)_2$ dissolved in water to give 500 ml solution

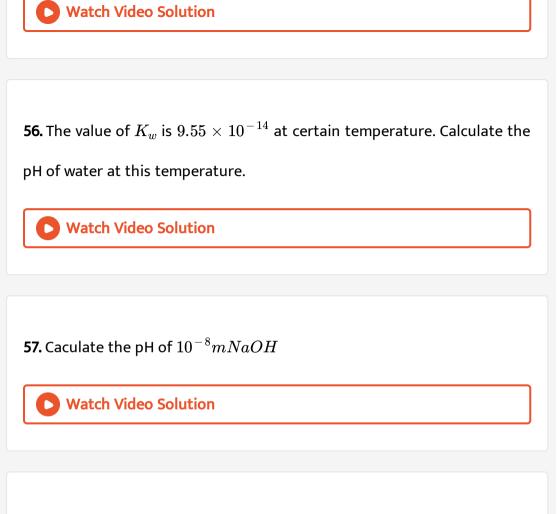
b. 0.3 g of NaOH dissolved in water to give 200 ml solution

c. 0.1825% HCl aqueous solution

d. 1 ml of 13.6 M HCl is diluted with water to give 1 litre solution.

Watch Video Solution

54. Calculate the pH of the following solution :


(a)2g of TlOH dissolved in water to give 2 litre of solution.

- (b) 0.3g of $Ca(OH)_2$ dissolved in water to give 500mL of solution.
- $(c) \ 0.3g$ of NaOH dissolved in water to give 200mL of solution.
- (d) 1mL of 13.6MHCl is diluted with water to give 1 litre of solution.

Watch Video Solution

55. How many grams of NaOH are present in 100 ml solution if pH of the

solution is 10?

58. 150 ml of 0.5 HCl and 100 ml of 0.2 M HCl are mixed. Find the pH of the resulting solution.

59. Calculate the p of solution obtained by mixign 10 ml fo 0.1 M HCl and

40 ml off $0.2MH_2SO_4$.

60. 100 ml of pH = 4 solution is mixed with 100 ml of pH = 6 solution.

What is the pH of resulting solution?

Watch Video Solution

61. Equal volumes of M NaOH and 0.3 M KOH are mixed in an experiment.

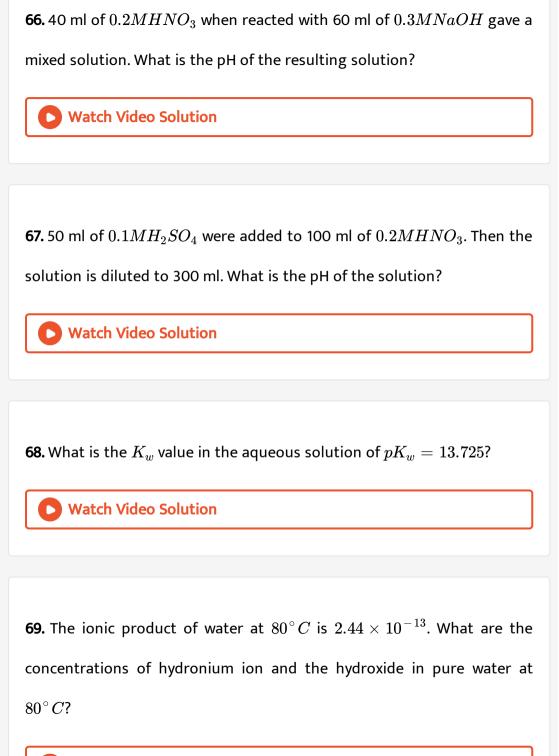
Find the POH and pH of the resulting solution.

62.60 ml of 1 M HCl is mixed with 40 ml of 1M NaOH. What is the pHH of

resultant solution?

63. Calculate the pH of a solution which contains 100 ml of 0.1 H HCl and 9.9 ml of 1.0 M NaOH.

Watch Video Solution


64. What will be the resultant pH when 200 ml of an aqueous solution of

HCl having pH = 2 is mixed with 300 ml of a aqueous solution of NaOH

having pH = 12?

Watch Video Solution

65. 50 ml of 0.2 M HCl is added to 30 ml of 0.1 MKOH solution. Find the pH of the solution.

70. The ionization constnat for water is $2.9 imes 10^{-14}$ at $40^{\,\circ} C$. Calculate

 $[H_3O^+], [OH], pH$ and pOH for pure water at $40^\circ C$.

71. Calculate the pH of

a. 0.002 M acetic acid having 2.3% dissociation.

b. $0.002MNH_4OH$ having 2.3% dissociation.

Watch Video Solution

72. Calculate the pH of

a. 0.002 M acetic acid having 2.3% dissociation.

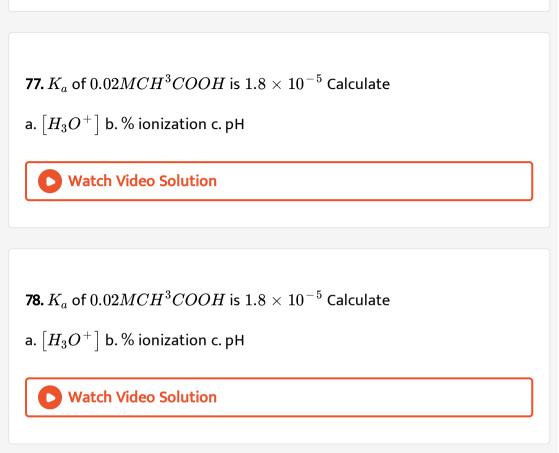
b. $0.002MNH_4OH$ having 2.3% dissociation.

73. Calculate Ka of acetic acid from equilibrium concentration given below:

$$ig[H_3O^+ig] = ig[CH_3COO^-ig] = 1.34 imes10^{-3}M, [CH_3COOH] = 9.866 imes10^-$$

74. Calculate pH of 0.1 M acetic acid having $K_a = 1.8 imes 10^{-5}$

Watch Video Solution


75. The pH of 0.1 M solution of weak mono protic acid is 4.0. Calculate its

 $\left[H^{\,+}
ight]$ and Ka.

> Watch Video Solution

76. K_a of $0.02MCH^3COOH$ is $1.8 imes10^{-5}$ Calculate

a. $\left[H_{3}O^{+}
ight]$ b. % ionization c. pH

79. Calculate the pH of 0.01 M solution of CH_3COOH . K_a for

 CH_3COOH at 298K is $1.8 imes 10^{-5}$

80. The pH of 0.1 M solution of an organic acid is 4.0. Calculate the dissociation constant of the acid.

81. The ionization constants of HF, HCOOH and HCN at 298 K are $6.8x10^{-4}$, 1.8×10^{-4} and 4.7×10^{-9} respectively. Calculate the ionization constants of the corresponding conjugate base.

Watch Video Solution

82. Find the concentration of hydroxide ion in a 0.25 M solution of trimethylamine, a weak base.

$$(CH_3)_3N+H_2O \Leftrightarrow (CH_3)_3+OH^-, K_b=7.4 imes 10^{-5}$$

83. The 0.005 M monobasic acid has a pH of 5. What is the extent of

ionization?

Watch Video Solution

84. 50 ml of $0.1MNH_4OH$, 25 ml of $2MNH_4Cl$ were used to make a

buffer. What is the pH if pK_a is 4.8?

Watch Video Solution

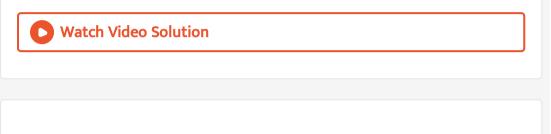
85. The pH of a buffer prepared by mixing 50 ml of $0.2MCH_3COOH$ and

25 ml of CH_3COONa is 4.8. If the pK_a is 4.8, what is the strength of CH_3COONa ?

86. 50 ml o 0.1 M sodium acetate, 25 ml of 0.2 M acetic acid were added together to form the buffer solution. pK_a of CH_3COOH is 4.8. Find the pH of the solution.

Watch Video Solution

87. When 20 ml of 0.1 MNH_4OH are added to 20 ml of MNH_4Cl solution, the pH of the buffer formed is 8.2. What is the pK_b of NH_4OH ?


Watch Video Solution

88. One litre of buffer solution contains 0.1 mole of acetic acid add 1 mole

of sodium acetate. Find its pH if pK_a of CH_3COOH is 4.8.

89. 50 ml of $1MCH_3COOH$ solutioin, when added to 50 ml of 0.5 M NaOH gives a solution with a pH value 'X'. Find the valuer of 'X', pK_a of acetic acid is 4.8.

90. The solibility product of Ag cl is $1.6 imes 10^{-10} \mathrm{mol}^2 \,/\, L^2.$ What is its

solubility?

Watch Video Solution

91. The solubility product of $Zr(OH)_2$ is $4.5 imes 10^{-17} {
m mol}^3 L^{-3}$. What is

solubility?

92. The solubility of Ag_2CrO_4 is $1.3 imes10^{-4}{
m mol}L^{-1}$. What is the

solubility product?

93. The solubility of $A_2B=2 imes 10^{-3}{
m mol}L^{-1}.$ What is solubility product?

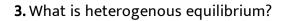
Watch Video Solution

94. The solubility product of a salt $AB = 10^{-10} \mathrm{mol}^2 L^{-2}$. What is the

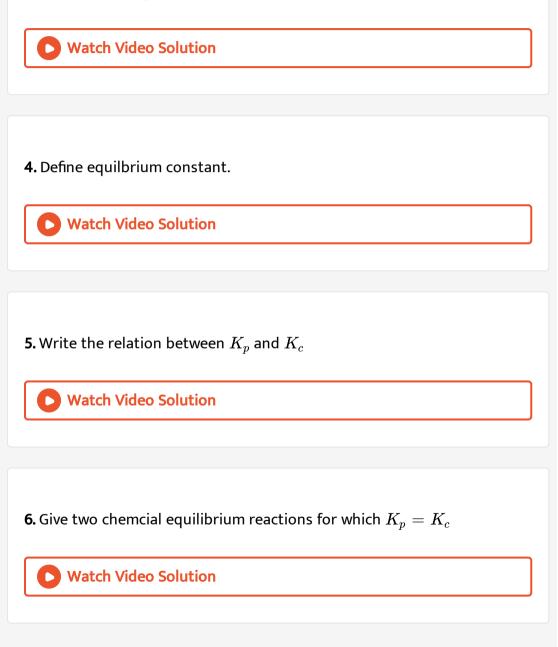
solubility?

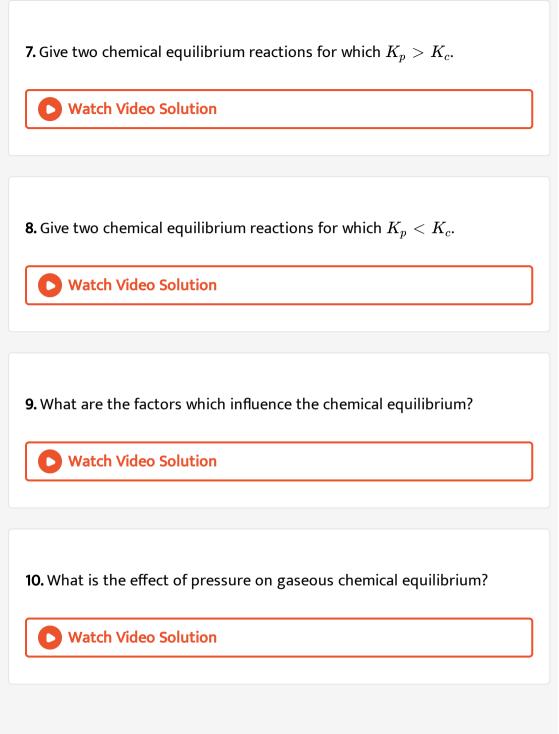
95. PQ and RS_2 are two sparingly soluble salts. Their solubility prodcts are equal and each equal to $4.0 imes10^{-18}$. Which salt is more soluble?

96. In a 0.1 solution, acetic acid is 1.34% ionized. Calculate $[H^+]$, $[CH_3COO^-]$ and $[CH_3COOH]$ in the solution and calculate K_a of acetic acid.


Watch Video Solution

Important Questions


1. State law of chemical equilibrium.


Watch Video Solution

2. Why the concentrations of pure liquids and pure solids are ignored from equilibrium constant expressions?

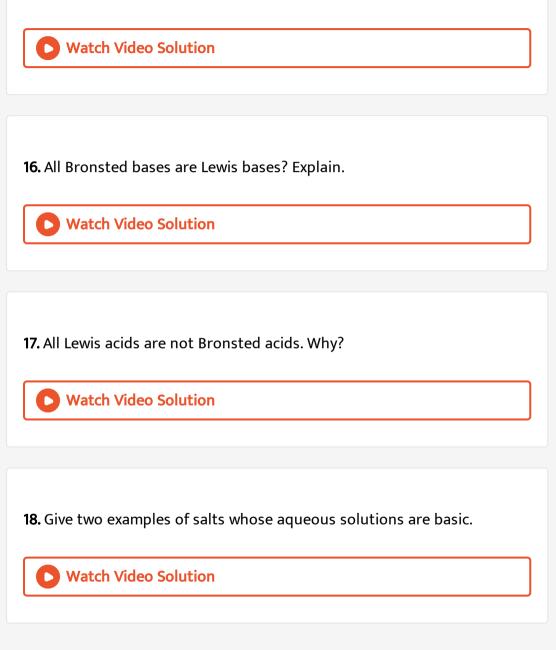
Write two heterogeneous reactions.

11. The equilibrium constants of a reaction at $27^{\circ}C$ and aet $127^{\circ}C$ are 1.6×10^{-3} and 7.6×10^{-2} respectively. Is the reaction exothermic or endothermic?

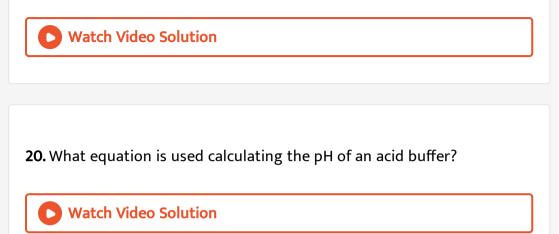
Watch	Video	Sal	ution
walcii	viueo	201	ulion

12. For an exothermic reaction, what happens to the equilibrium constant

if temperature is raised?


Watch Video Solution

13. What is a Bronsted base? Give one example.



14. What is Lewis acid? Give one example.

15. What is meant by ionic product of water?

19. Give two examples of salts whose aqueous salts are acidic.

21. Write expression for the equilibrium constant, K_c , for each of the following reactions:

(i)
$$2NOCl_{(g)} \leftrightarrow 2NO_{(g)} + Cl_{2(g)}$$

(ii) $2Cu(NO_3)_{2(s)} \Leftrightarrow 2CuO_{(s)} + 4NO_{2(g)} + O_{2(g)}$
(iii) $CH_3COOC_2H_{5(ag)} + H_2O(I) \Leftrightarrow CH_3COOH_{(aq)} + C_2H_5OH_{(aq)}$
(iv) $Fe_{(aq)}^{+3} + 3OH_{(aq)}^{-} \Leftrightarrow Fe(OH)_{3(S)}^{+}$

22. Write expression for the equilibrium constant, K_c , for each of the following reactions:

(i) $2NOCl_{(g)} \leftrightarrow 2NO_{(g)} + Cl_{2(g)}$ (ii) $2Cu(NO_3)_{2(s)} \Leftrightarrow 2CuO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ (iii) $CH_3COOC_2H_{5(ag)} + H_2O(I) \Leftrightarrow CH_3COOH_{(aq)} + C_2H_5OH_{(aq)}$ (iv) $Fe_{(aq)}^{+3} + 3OH_{(aq)}^{-} \Leftrightarrow Fe(OH)_{3(S)}^{+}$

Watch Video Solution

23. Write expression for the equilibrium constant, K_c , for each of the following reactions:

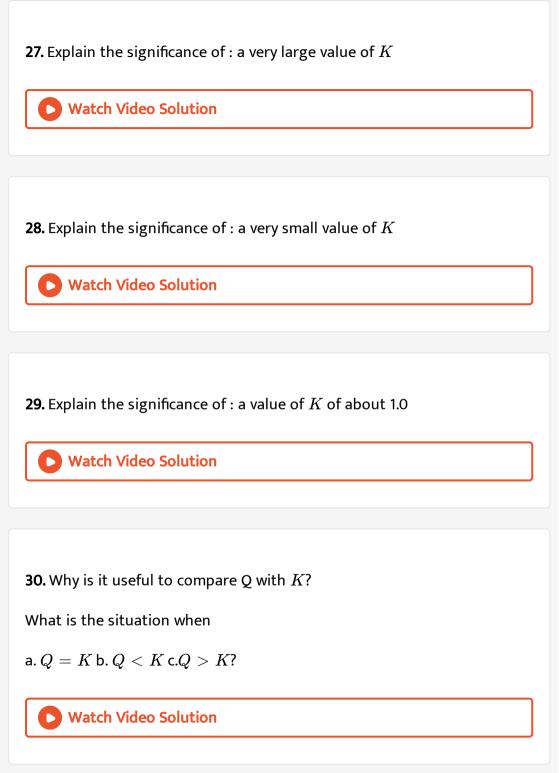
(i)
$$2NOCl_{(g)} \leftrightarrow 2NO_{(g)} + Cl_{2(g)}$$

(ii) $2Cu(NO_3)_{2(s)} \Leftrightarrow 2CuO_{(s)} + 4NO_{2(g)} + O_{2(g)}$
(iii) $CH_3COOC_2H_{5(ag)} + H_2O(I) \Leftrightarrow CH_3COOH_{(aq)} + C_2H_5OH_{(aq)}$
(iv) $Fe_{(aq)}^{+3} + 3OH_{(aq)}^{-} \Leftrightarrow Fe(OH)_{3(S)}^{+}$

24. Write expression for the equilibrium constant, K_c , for each of the following reactions:

(i) $2NOCl_{(g)} \leftrightarrow 2NO_{(g)} + Cl_{2(g)}$ (ii) $2Cu(NO_3)_{2(s)} \Leftrightarrow 2CuO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ (iii) $CH_3COOC_2H_{5(ag)} + H_2O(I) \Leftrightarrow CH_3COOH_{(aq)} + C_2H_5OH_{(aq)}$ (iv) $Fe_{(aq)}^{+3} + 3OH_{(aq)}^{-} \Leftrightarrow Fe(OH)_{3(S)}^{+}$

Watch Video Solution


25. Derive the relation between K_p and K_c for the equilibrium reaction.

 $N_2(g)+3H_2(g) \Leftrightarrow 2NH_3(g)$

Watch Video Solution

26. Why sealed soda water bottle on opening shows the evolution of gas

with effervescence?

31. Does the number of moles of reaction products increase, decrease, or remains same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?

 $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$

Watch Video Solution

32. Does the number of moles of reaction products increase, decrease, or remains same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?

$$Cao(s) + CO(-2)(g) \Leftrightarrow CaCO_3(s)$$

Watch Video Solution

33. Which of the following reactions will get affected by increasing the pressure? Also mention whether chasnge will cause the reaction to go into forward or backward direction.

(i) $COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g)$

(ii)
$$CH_4(g) + 2S_2(g) \Leftrightarrow CS_2(g) + 2H_2S(g)$$

(iii) $CO_2(g) + C(s) \Leftrightarrow 2CO(g)$
(iv) $4NH_3 + (g) + 5O_2(g) \Leftrightarrow 4NO(g) + 6H_2O(g)$

34. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.

 $egin{aligned} (i)COCl_2(g) &\Leftrightarrow CO(g) + Cl_2(g) \ (ii)CH_4(g) + 2S_2(g) &\Leftrightarrow CS_2(g) + 2H_2S(g) \ (iii)CO_2(g) + C(s) &\Leftrightarrow 2CO(g) \ (iv)2H_2(g) + CO(g) &\Leftrightarrow CH_3OH(g) \ (v)CaCO_3(s) &\Leftrightarrow CaO(s) + CO_2(g) \ (vi)4NH_3(g) + 5O_2(g) &\Leftrightarrow 4NO(g) + 6H_2O(g) \end{aligned}$

35. Which of the following reactions will get affected by increasing the pressure? Also mention whether chasnge will cause the reaction to go into forward or backward direction.

(i) $COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g)$ (ii) $CH_4(g) + 2S_2(g) \Leftrightarrow CS_2(g) + 2H_2S(g)$ (iii) $CO_2(g) + C(s) \Leftrightarrow 2CO(g)$ (iv) $4NH_3 + (g) + 5O_2(g) \Leftrightarrow 4NO(g) + 6H_2O(g)$

Watch Video Solution

36. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.

$$egin{aligned} (i)COCl_2(g) &\Leftrightarrow CO(g) + Cl_2(g) \ (ii)CH_4(g) + 2S_2(g) &\Leftrightarrow CS_2(g) + 2H_2S(g) \ (iii)CO_2(g) + C(s) &\Leftrightarrow 2CO(g) \ (iv)2H_2(g) + CO(g) &\Leftrightarrow CH_3OH(g) \end{aligned}$$

$$(v)CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$$

 $(vi)4NH_3(g)+5O_2(g) \Leftrightarrow 4NO(g)+6H_2O(g)$

Watch Video Solution

37. How will an increase in pressure and affect each of the following equilibria? An increase in temperature (i) $2NH_3(g) \Leftrightarrow N_2(g) + 3H_g\Delta H = 932kJ$ (ii) $N_2(g) + O(2)(g) \Leftrightarrow 2NO(g)\Delta H = 181kJ$ (iii) $2O_3(g) \Leftrightarrow 3O_2(g)\Delta H = -285kJ$ (iv) $CaO(s) + CO_2(g) \Leftrightarrow CaCO_3(s)\Delta H = -176kJ$

Watch Video Solution

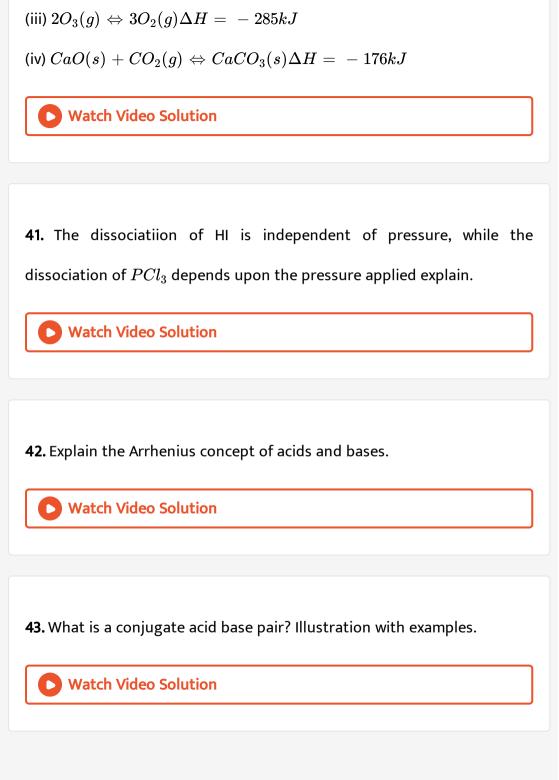
38. How will an increase in pressure and affect each of the following equilibria? An increase in temperature

(i) $2NH_3(g) \Leftrightarrow N_2(g) + 3H_g\Delta H = 932kJ$

(ii) $N_2(g) + O(2)(g) \Leftrightarrow 2NO(g)\Delta H = 181 kJ$

(iii) $2O_3(g) \Leftrightarrow 3O_2(g)\Delta H = -285 kJ$

(iv) $CaO(s) + CO_2(g) \Leftrightarrow CaCO_3(s)\Delta H = -176 kJ$


Watch Video Solution

39. How will an increase in pressure and affect each of the following equilibria? An increase in temperature (i) $2NH_3(g) \Leftrightarrow N_2(g) + 3H_g\Delta H = 932kJ$ (ii) $N_2(g) + O(2)(g) \Leftrightarrow 2NO(g)\Delta H = 181kJ$ (iii) $2O_3(g) \Leftrightarrow 3O_2(g)\Delta H = -285kJ$ (iv) $CaO(s) + CO_2(g) \Leftrightarrow CaCO_3(s)\Delta H = -176kJ$

40. How will an increase in pressure and affect each of the following equilibria? An increase in temperature

(i)
$$2NH_3(g) \Leftrightarrow N_2(g) + 3H_g\Delta H = 932kJ$$

(ii)
$$N_2(g) + O(2)(g) \Leftrightarrow 2NO(g)\Delta H = 181 kJ$$

44. Show by suitable equations that each of the following species can act

as a Bronsted base: H_2O

45. The species H_2O , HCO_3^- , HSO_4^- and NH_3 can act both as Bronsted acids and base. Give the corresponding conjugate acid and base for each of them.

Watch Video Solution

46. Classify the species $AlCl_3$, NY_3 , Mg^{+2} and H_2O into Lewis acids and

Lewis bases and justify your answer?

Watch Video Solution

47. Define ionic product of water. What is the value at room temperature?

48. Define pH. pH cannot be calculated directly from the molar concentration of a weak acid or weak base. Why? Derive an equation for the pH of a weak acid.

Watch Video Solution

49. What is common ion effect? Illustrate.

Watch Video Solution

50. Define solubility product. Write solubility product expressiions for the

following:

 $Ag_2Cr_2O_7$

51. Define solubility product. Write solubility product expressions for the following: $Zr_3(PO_4)_{A}$ Watch Video Solution **52.** Aqueous solution of NH_4Cl is acidic. Explain. Watch Video Solution **53.** Aqueous solution of CH_3COONa is basic. Explain Watch Video Solution 54. What are equilibrium processes? Explain equilibrium in Physical and Chemical processes with examples.

55. What are the important features of equilibrium constant? Discuss any

two applications of equilibrium constant.

0	Watch Video Solution	
---	----------------------	--

56. What is Le Chatelier's principle? Discuss breifly the factors which can influcence the equilibrium.

Watch Video Solution

57. Discuss the application of LE Chatellier's principle for the industrial

synthesis of Ammonia and sulphur trioxide.

58. Describe the effect of:

a. addition of ${\cal H}_2$

b. addition of CH_3OH

c. removal of CO

d. removal of CH_3OH on the equilibrium of the reaction.

 $2H_2(g)+CO(g)\Leftrightarrow CH_3OH(g)$

59. Explain the concept of Bronsted acids and Bronsted bases. Illustrate the answer with suitable examples.

Watch Video Solution

60. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.

a. $OH^{\,-}$ b. $F^{\,-}$ c. $H^{\,+}$ d. BCl_3

61. Define pH. What is buffer solution? Derive Henderson-Hasselbalch equation for calculating the pH of an acid buffer solution.

62. Explain the term Hydrolysis of salts with examples. Discuss the pH of

the following types of salt solutions.

(i) Salts of weak acid and strong base.

(ii) Salts of strong acid and weak base.

63. Explain the term Hydrolysis of salts with examples. Discuss the pH of

the following types of salt solutions.

(i) Salts of weak acid and strong base.

(ii) Salts of strong acid and weak base.

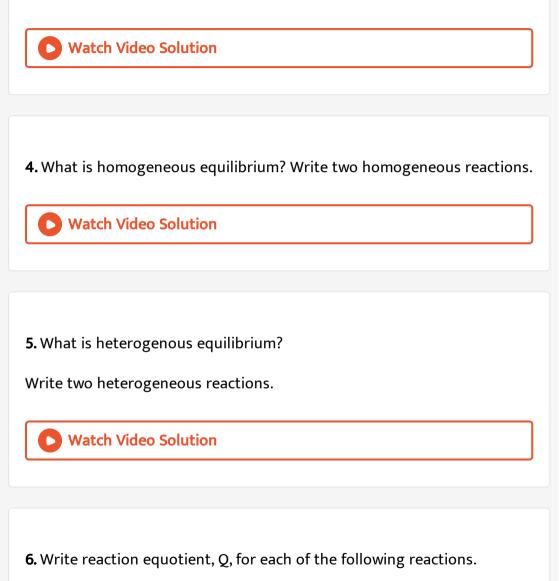
64. What is solubilityy product? Explain the common ion effect on solubility of ionic salts.

Watch Video Solution

Very Short Answer Questions

1. State law of chemical equilibrium.

Watch Video Solution


2. Can equilibrium be achieved between water and its vapours in an open

vessel? Explain.

3. Why the concentrations of pure liquids and pure solids are ignored

from equilibrium constant expressions?

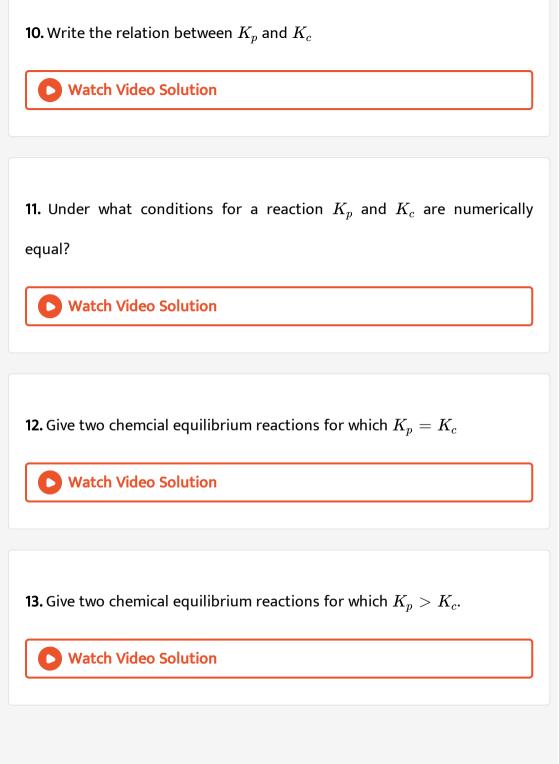
a. $3O_2(g) \Leftrightarrow 2O_3(g)$

 $\mathsf{b}.\,4NH_3(g)+7O_2(g) \Leftrightarrow 4NO_2(g)+6H_2O(g)$

7. Write reaction equotient, Q, for each of the following reactions.

a. $3O_2(g) \Leftrightarrow 2O_3(g)$

 $\mathsf{b}.\,4NH_3(g)+7O_2(g) \Leftrightarrow 4NO_2(g)+6H_2O(g)$


Watch Video Solution

8. Define equilbrium constant.

Watch Video Solution

9. The equilibrium constant expression for a gas reaction is $K_c = rac{[NH_3]^4[O_2]^5}{[NO]^4[H_2O]^6}$

Write the balanced chemical equation corresponding to this expression.

14. Give two chemical equilibrium reactions for which $K_p < K_c$.

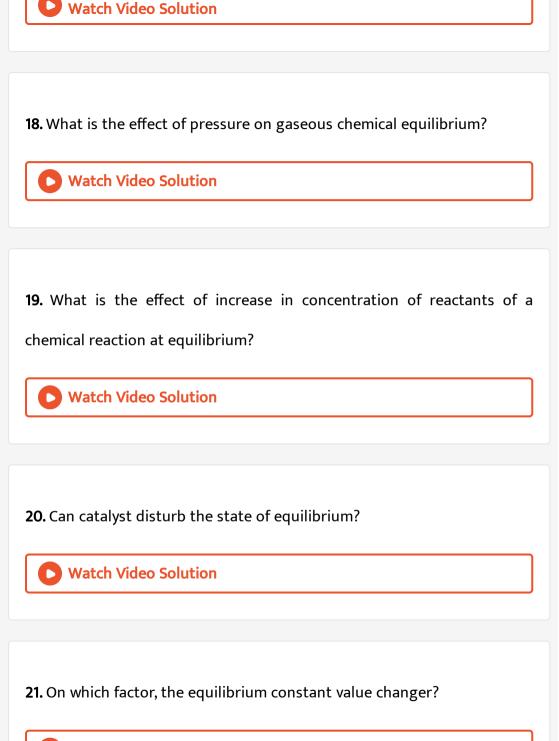
15. Write the equations for the conversion of $K_c \mathsf{d}$ to K_p for each of the

following reaction.

 $CO(g) + H_2O(g) \Leftrightarrow CO_2(g) + H_2(g)$

Watch Video Solution

16. Write the equations for the conversion of $K_c d$ to K_p for each of the


following reaction.

 $C_3H_8(g)+5O_2(g)\Leftrightarrow 3CO_2(g)+4H_2O(g)$

Watch Video Solution

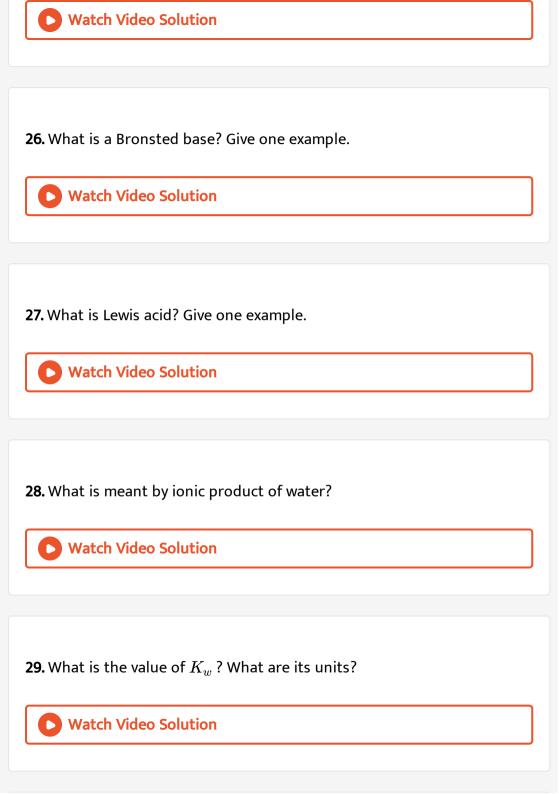
17. What are the factors which influence the chemical equilibrium?

22. The equilibrium constants of a reaction at $27^{\circ}C$ and aet $127^{\circ}C$ are 1.6×10^{-3} and 7.6×10^{-2} respectively. Is the reaction exothermic or endothermic?

Watch Video Solution

23. What is the effect of temperature on a system at equilibrium?

Watch Video Solution


24. For an exothermic reaction, what happens to the equilibrium constant

if temperature is raised?

25. What kind of equilibrium constant can be calculated from ΔG° value

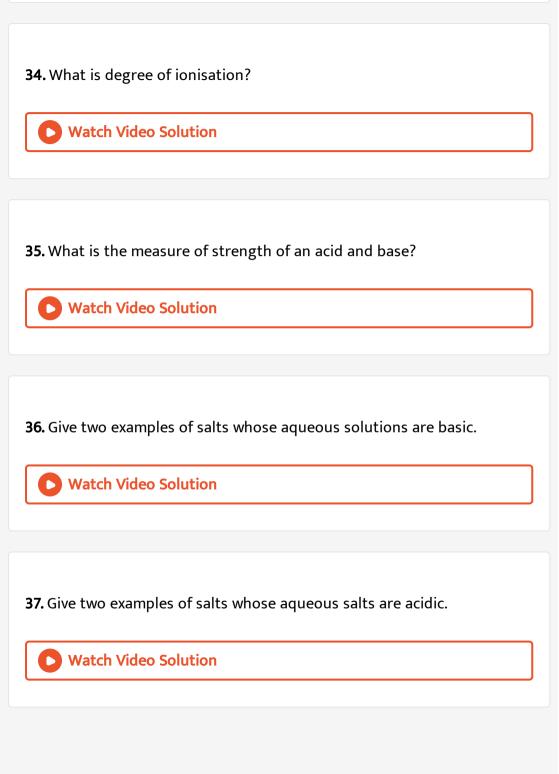
for a reaction involving only gases?

30. What is the effect of temperature on ionic product of water?

Watch Video Solution

31.
$$H_2O + H_2O \Leftrightarrow H_3O^+ + OH^-$$

The ionic product of water is $1 imes 10^{-14}$ at $25^\circ C$ and $3.0 imes 10^{-14}$ at $40^\circ C$


is the above process endothermic or exothermic?

Watch Video Solution

32. All Bronsted bases are Lewis bases? Explain.

33. All Lewis acids are not Bronsted acids. Why?

38. What equation is used calculating the pH of an acid buffer?

39. Phosphoric acid (H_3PO_4) have three ionization constants K_{a_1} , K_{a_2} and K_{a_3} . Among these ionization constants which has a lower value ? Give reason for it.

Watch Video Solution

40. Ice melts slowly at high altitudes. Explain Why?

Short Answer Questions

1. Write expression for the equilibrium constant, K_c , for each of the following reactions:

(i) $2NOCl_{(g)} \leftrightarrow 2NO_{(g)} + Cl_{2(g)}$ (ii) $2Cu(NO_3)_{2(s)} \Leftrightarrow 2CuO_{(s)} + 4NO_{2(g)} + O_{2(g)}$ (iii) $CH_3COOC_2H_{5(ag)} + H_2O(I) \Leftrightarrow CH_3COOH_{(aq)} + C_2H_5OH_{(aq)}$ (iv) $Fe_{(aq)}^{+3} + 3OH_{(aq)}^{-} \Leftrightarrow Fe(OH)_{3(S)}^{+}$

Watch Video Solution

2. Write expression for the equilibrium constant, K_c , for each of the following reactions:

(i)
$$2NOCl_{(g)} \leftrightarrow 2NO_{(g)} + Cl_{2(g)}$$

(ii) $2Cu(NO_3)_{2(s)} \Leftrightarrow 2CuO_{(s)} + 4NO_{2(g)} + O_{2(g)}$
(iii) $CH_3COOC_2H_{5(ag)} + H_2O(I) \Leftrightarrow CH_3COOH_{(aq)} + C_2H_5OH_{(aq)}$
(iv) $Fe_{(aq)}^{+3} + 3OH_{(aq)}^{-} \Leftrightarrow Fe(OH)_{3(S)}^{+}$

3. Write expression for the equilibrium constant, Kc for each of the

following reactions.

 $CH_{3}COOC_{2}H_{5(aq)} + H_{2}O(l) \Leftrightarrow CH_{3}COOH_{(aq)} + C_{2}H_{5}OH_{(aq)}$

4. Write expression for the equilibrium constant, Ke for each of the following reactions.

$$Fe^{\,+\,3}_{\,(aq)}\,+\,+\,3OH^{\,-}_{\,(aq)}\,\Leftrightarrow\,Fe(OH)_{3\,(\,s\,)}$$

Watch Video Solution

5. Derive the relation between K_p and K_c for the equilibrium reaction.

$$N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$$

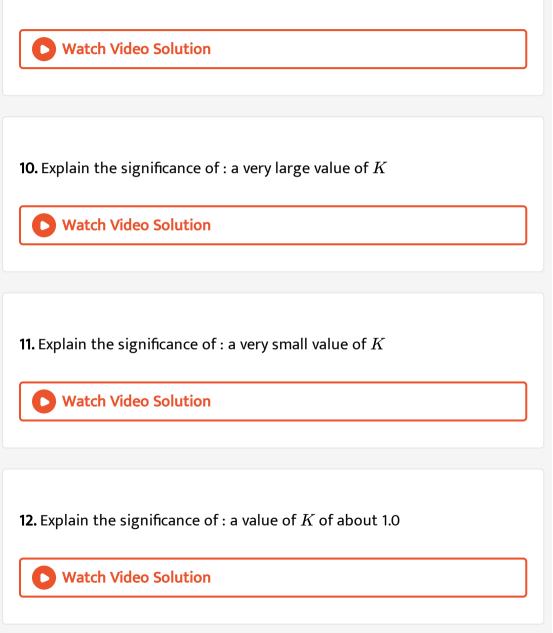
6. Define equilibrium constant. Write the equilibrium constant expression

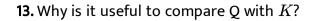
for the reaction of

 $H_2(g)+I_2(g) \Leftrightarrow 2HI(g)$

and its reverse reaction. How are the two equilibrium constants related?

Watch Video Solution


7. How does the values of equilibrium constant predict the extent of reaction?


Watch Video Solution

8. State law of chemical equilibrium? What is K_c for the following equilibrium when the equilibrium concentration of each substance is $[SO_2] = 0.60M, [O_2] = 0.82M$ and $[SO_3] = 1.90M$ $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g)$

9. Why sealed soda water bottle on opening shows the evolution of gas

with effervescence?

What is the situation when

a. Q = K b. Q < K c.Q > K?

Watch Video Solution

14. Why is it useful to compare Q with K?

What is the situation when

 $\mathsf{a.}\, Q = K\,\mathsf{b.}\, Q < K\,\mathsf{c.}Q > K?$

Watch Video Solution

15. Why is it useful to compare Q with K?

What is the situation when

a. Q = K b. Q < K c.Q > K?

16. For the reaction

 $Cl_2(g)+F_2(g)\Leftrightarrow ClF(g), K_c=19.9$ What will happen in a mixture originally containing $[Cl_2]=0.04{
m mol}L^-$,

 $[F_2] = 0.2 \mathrm{mol} L^{-1}$ and $[ClF] = 7.3 \mathrm{mol} L^-$?

17. Predict which of the following reactionn will have appreciable concentration of reactants and products:

$$Cl_2(g) \Leftrightarrow 2Cl(g), K_c = 5 imes 10^{-39}$$

18. Predict which of the following reactionn will have appreciable concentration of reactants and products:

$$Cl_2(g)+2NO(g) \Leftrightarrow 2BNOCl(g), K_c=3.7 imes 10^8$$

19. Predict which of the following reactionn will have appreciable concentration of reactants and products:

 $Cl_2(g)+2NO_2(g) \Leftrightarrow 2NO_2Cl(g), K_c=1.8$

20. How to recognise the conditions under which changes in pressure would effect system in equilibrium.

Watch Video Solution

21. What property of a reaction can be used to predict the effect of a

change in temperature on the magnitude of an equilibrium constant?

22. Does the number of moles of reaction products increase, decrease, or remains same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?

 $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$

Watch Video Solution

23. Does the number of moles of reaction products increase, decrease, or remains same when each of the following equilibrium is subjected to a decrease in pressure by increasing the volume?

 $Cao(s) + CO(-2)(g) \Leftrightarrow CaCO_3(s)$

Watch Video Solution

24. Which of the following reactions will get affected by increasing the pressure? Also mention whether chasnge will cause the reaction to go into forward or backward direction.

(i) $COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g)$

(ii)
$$CH_4(g) + 2S_2(g) \Leftrightarrow CS_2(g) + 2H_2S(g)$$

(iii) $CO_2(g) + C(s) \Leftrightarrow 2CO(g)$
(iv) $4NH_3 + (g) + 5O_2(g) \Leftrightarrow 4NO(g) + 6H_2O(g)$

25. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.

 $egin{aligned} (i)COCl_2(g) &\Leftrightarrow CO(g) + Cl_2(g) \ (ii)CH_4(g) + 2S_2(g) &\Leftrightarrow CS_2(g) + 2H_2S(g) \ (iii)CO_2(g) + C(s) &\Leftrightarrow 2CO(g) \ (iv)2H_2(g) + CO(g) &\Leftrightarrow CH_3OH(g) \ (v)CaCO_3(s) &\Leftrightarrow CaO(s) + CO_2(g) \ (vi)4NH_3(g) + 5O_2(g) &\Leftrightarrow 4NO(g) + 6H_2O(g) \end{aligned}$

26. Which of the following reactions will get affected by increasing the pressure? Also mention whether chasnge will cause the reaction to go into forward or backward direction.

(i) $COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g)$ (ii) $CH_4(g) + 2S_2(g) \Leftrightarrow CS_2(g) + 2H_2S(g)$ (iii) $CO_2(g) + C(s) \Leftrightarrow 2CO(g)$ (iv) $4NH_3 + (g) + 5O_2(g) \Leftrightarrow 4NO(g) + 6H_2O(g)$

Watch Video Solution

27. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.

$$egin{aligned} (i)COCl_2(g)&\Leftrightarrow CO(g)+Cl_2(g)\ (ii)CH_4(g)+2S_2(g)&\Leftrightarrow CS_2(g)+2H_2S(g)\ (iii)CO_2(g)+C(s)&\Leftrightarrow 2CO(g)\ (iv)2H_2(g)+CO(g)&\Leftrightarrow CH_3OH(g) \end{aligned}$$

$$(v)CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$$

 $(vi)4NH_3(g)+5O_2(g) \Leftrightarrow 4NO(g)+6H_2O(g)$

Watch Video Solution

28. How will an increase in pressure and affect each of the following equilibria? An increase in temperature (i) $2NH_3(g) \Leftrightarrow N_2(g) + 3H_g\Delta H = 932kJ$ (ii) $N_2(g) + O(2)(g) \Leftrightarrow 2NO(g)\Delta H = 181kJ$ (iii) $2O_3(g) \Leftrightarrow 3O_2(g)\Delta H = -285kJ$ (iv) $CaO(s) + CO_2(g) \Leftrightarrow CaCO_3(s)\Delta H = -176kJ$

Watch Video Solution

29. How will an increase in pressure and affect each of the following equilibria? An increase in temperature

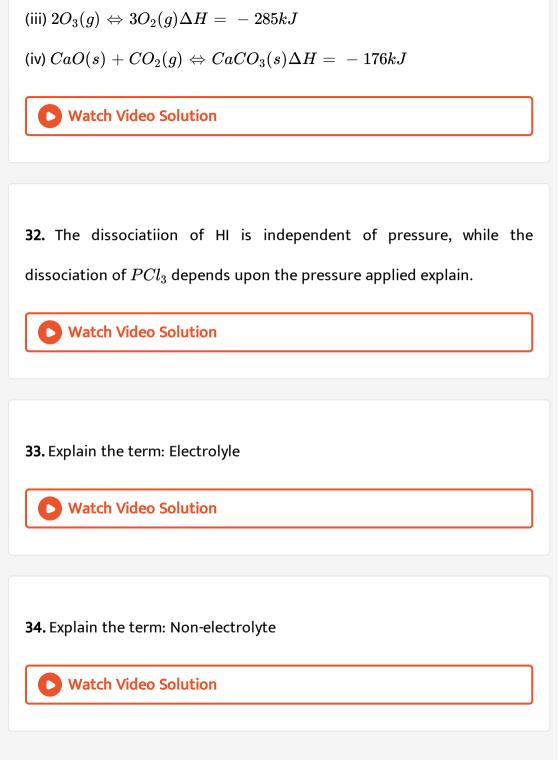
(i)
$$2NH_3(g) \Leftrightarrow N_2(g) + 3H_g\Delta H = 932kJ$$

(ii)
$$N_2(g) + O(2)(g) \Leftrightarrow 2NO(g)\Delta H = 181 kJ$$

(iii) $2O_3(g) \Leftrightarrow 3O_2(g)\Delta H = -285 kJ$

(iv) $CaO(s)+CO_2(g) \Leftrightarrow CaCO_3(s)\Delta H= -176kJ$

Watch Video Solution


30. How will an increase in pressure and affect each of the following equilibria? An increase in temperature (i) $2NH_3(g) \Leftrightarrow N_2(g) + 3H_g\Delta H = 932kJ$ (ii) $N_2(g) + O(2)(g) \Leftrightarrow 2NO(g)\Delta H = 181kJ$ (iii) $2O_3(g) \Leftrightarrow 3O_2(g)\Delta H = -285kJ$ (iv) $CaO(s) + CO_2(g) \Leftrightarrow CaCO_3(s)\Delta H = -176kJ$

31. How will an increase in pressure and affect each of the following equilibria? An increase in temperature

(i) $2NH_3(g) \Leftrightarrow N_2(g) + 3H_g\Delta H = 932kJ$

Watch Video Solution

(ii) $N_2(g) + O(2)(g) \Leftrightarrow 2NO(g)\Delta H = 181 kJ$

35. Explain the term: Strong and weak electrolytes

Watch Video Solution
36. Explain the term: Ionic equilibrium
Watch Video Solution
37. Explain the terms: extent of ionization and on what factors it depends
Watch Video Solution
38. Explain the Arrhenius concept of acids and bases.
Watch Video Solution

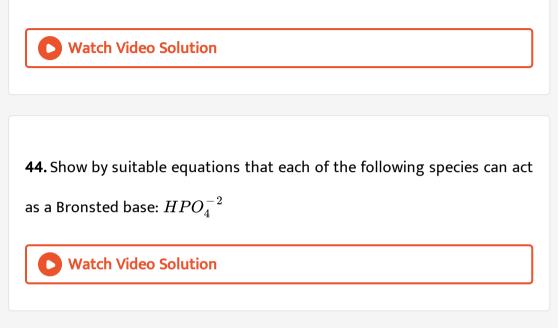
39. What is a conjugate acid base pair? Illustration with examples.

40. Acetic acid is a weak acid. List in order of descending concentration all of the ionic and molecular species present in 1M aqueous solution of acetic acid.

> Watch Video Solution

41. Show by suitable equations that each of the following species can act

as a Bronsted base: H_2O

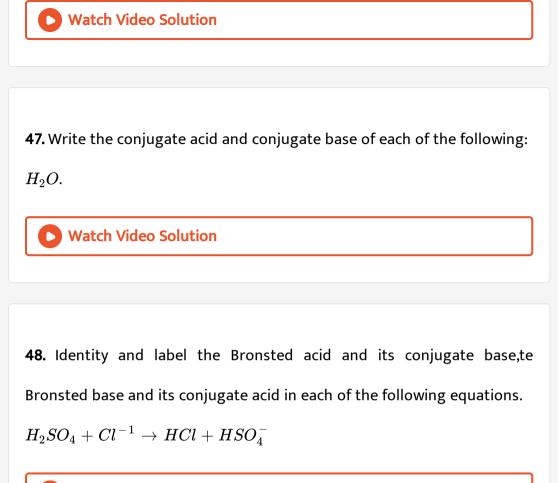

Watch Video Solution

42. Show by suitable equations that each of the following species can act

as a Bronsted base: OH^{-}

43. Show by suitable equations that each of the following species can act

as a Bronsted base: C_2H_5OH



45. The species H_2O , HCO_3^- , HSO_4^- and NH_3 can act both as Bronsted acids and base. Give the corresponding conjugate acid and base for each of them.

46. Write equation that showss $H_2PO_4^-$ acting both as an acid and as a

base.

Watch Video Solution

49. Classify the species $AlCl_3$, NY_3 , Mg^{+2} and H_2O into Lewis acids and

Lewis bases and justify your answer?

50. What are the strengths of conjuate bases of a strong acid and a weak

acid?

Vatch Video Solution
51. What are the strengths of conjuate acids of a strong base and weak base?
Vatch Video Solution
52. Define ionic product of water. What is the value at room temperature?
Watch Video Solution
52 Define all all connet be calculated directly from the maler
53. Define pH. pH cannot be calculated directly from the molar
concentration of a weak acid or weak base. Why? Derive an equation for

the pH of a weak acid.

54. Write equations to show the step wise ionization of the polyprotic

acids H_2SO_4 and H_3PO_4 .

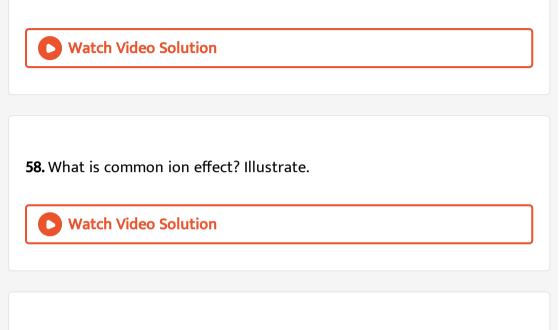
Watch Video Solution

55. Explain how acid strength changes among

i. the hydrides of the group elements and

(ii) the hydrides in the same row of the periodic.

Watch Video Solution


56. Explain how acid strength changes among

i. the hydrides of the group elements and

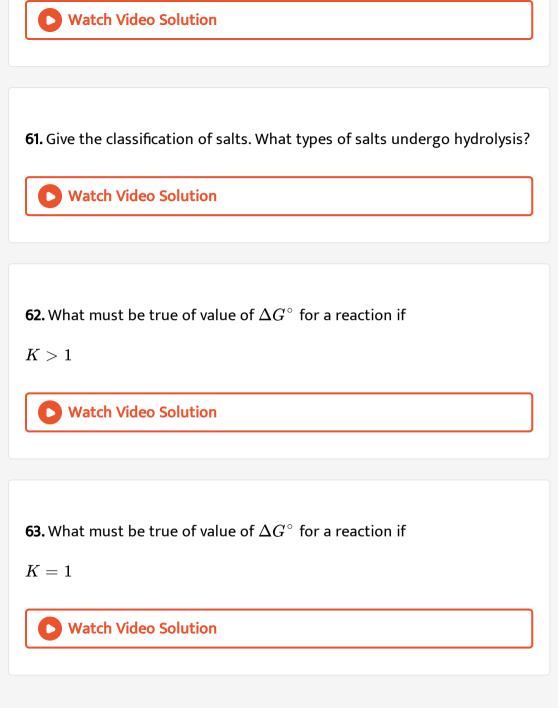
(ii) the hydrides in the same row of the periodic.

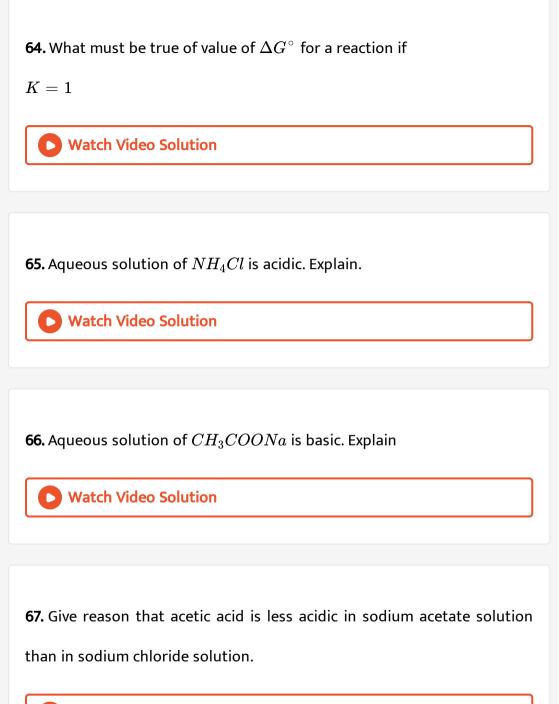
57. Justifyi the statement that water behaves like an acid an also like base

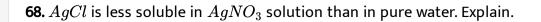
on the basis of protonic concept.

59. Define solubility product. Write solubility product expressiions for the

following:


 $Ag_2Cr_2O_7$




60. Define solubility product. Write solubility product expressions for the

following:

 $Zr_3(PO_4)_4$

69. Predict whether the following reaction will proceed from left to the right to any measurable extent:

 $CH_{3}COOH(aq)+Cl^{-}(aq)
ightarrow$

Watch Video Solution

70. Aqueous solution of H_2S contains H_2S , HS^- , S^{2-} , H_3O^+ , $OH^$ and H_2O in varying concentrations. Which of these species can act only as a base? Which can act only as an acid? Which can act both as an acid and as a base?

Watch Video Solution

Long Answer Questions

1. What are equilibrium processes? Explain equilibrium in Physical and

Chemical processes with examples.

Watch Video Solution

2. What is meant by dynamic equilibrium?

Explain with suiitable examples.

Watch Video Solution

3. Give the general characteristics of equilibrium involving physical processes.

4. What are the important features of equilibrium constant? Discuss any

two applications of equilibrium constant.

5. What is Le Chatelier's principle? Discuss breifly the factors which can influcence the equilibrium.

Watch Video Solution

6. Discuss the application of LE Chatellier's principle for the industrial synthesis of Ammonia and sulphur trioxide.

7. Dihydrogen gas is obtained from natural gas by partial oxidation with stream as per the following endothermic reaction.

 $CH_4(g) + H_2O(g) \Leftrightarrow CO(g) + 3H_2(g)$

a. Write an expression for K_p for the above reaction.

b. How will the values o $K_{\!\scriptscriptstyle p}$ and composition of equilibrium mixture be

affected by

(i) increasxing the pressure (ii) increasing the temperature (iii) using a catalyst?

Watch Video Solution

8. Dihydrogen gas is obtained from natural gas by partial oxidation with stream as per the following endothermic reaction.

 $CH_4(g) + H_2O(g) \Leftrightarrow CO(g) + 3H_2(g)$

a. Write an expression for K_p for the above reaction.

b. How will the values o K_p and composition of equilibrium mixture be affected by

(i) increasxing the pressure (ii) increasing the temperature (iii) using a catalyst?

9. Dihydrogen gas is obtained from natural gas by partial oxidation with stream as per the following endothermic reaction.

$$CH_4(g)+H_2O(g)\Leftrightarrow CO(g)+3H_2(g)$$

a. Write an expression for K_p for the above reaction.

b. How will the values o K_p and composition of equilibrium mixture be affected by

(i) increasxing the pressure (ii) increasing the temperature (iii) using a catalyst?

Watch Video Solution

10. Dihydrogen gas is obtained from natural gas by partial oxidation with stream as per the following endothermic reaction.

 $CH_4(g) + H_2O(g) \Leftrightarrow CO(g) + 3H_2(g)$

a. Write an expression for K_p for the above reaction.

b. How will the values o K_p and composition of equilibrium mixture be

affected by

(i) increasxing the pressure (ii) increasing the temperature (iii) using a catalyst?

11. Describe the effect of:

a. addition of H_2

b. addition of CH_3OH

c. removal of CO

d. removal of CH_3OH on the equilibrium of the reaction.

 $2H_2(g)+CO(g) \Leftrightarrow CH_3OH(g)$

Watch Video Solution

12. Decribe the effect of :

addition of CH_3OH on the equilibrium of the reaction

 $2H_2(g)+CO(g) \Leftrightarrow CH_3OH(g)$

Watch Video Solution

13. Decribe the effect of :

removal of CO on the equilibrium of the reaction

 $2H_2(g)+CO(g) \Leftrightarrow CH_3OH(g)$

14. Describe the effect of:

a. addition of H_2

b. addition of CH_3OH

c. removal of CO

d. removal of CH_3OH on the equilibrium of the reaction.

 $2H_2(g)+CO(g) \Leftrightarrow CH_3OH(g)$

Watch Video Solution

15. At 473K, equilibrium constant K_C for the decompositioni of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If the decomposition is depicted as:

 $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)\Delta H = 124.0 k J \mathrm{mol}^{-1}$

a. Write an expression of K_c for the reaction.

b. What is the value of K_c for the reverse reaction at the same temperature?

c. What would be effect on K_c if

(i) more PCl_5 is added (ii) pressure is increased (iii) the temperature in increased.

Watch Video Solution

16. At 473K, equilibrium constant K_C for the decompositioni of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If the decomposition is depicted as:

 $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)\Delta H = 124.0 k J \mathrm{mol}^{-1}$

a. Write an expression of K_c for the reaction.

b. What is the value of K_c for the reverse reaction at the same temperature?

c. What would be effect on K_c if

(i) more PCl_5 is added (ii) pressure is increased (iii) the temperature in increased.

17. At 473K, equilibrium constant K_C for the decompositioni of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If the decomposition is depicted as:

$$PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)\Delta H = 124.0 k J \mathrm{mol}^{-1}$$

a. Write an expression of K_c for the reaction.

b. What is the value of K_c for the reverse reaction at the same temperature?

c. What would be effect on K_c if

(i) more PCl_5 is added (ii) pressure is increased (iii) the temperature in increased.

Watch Video Solution

18. At 473K, equilibrium constant K_C for the decompositioni of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If the decomposition is depicted as:

 $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)\Delta H = 124.0 k J \mathrm{mol}^{-1}$

a. Write an expression of K_c for the reaction.

b. What is the value of K_c for the reverse reaction at the same temperature?

c. What would be effect on K_c if

(i) more PCl_5 is added (ii) pressure is increased (iii) the temperature in increased.

Watch Video Solution

19. At 473K, equilibrium constant K_C for the decompositioni of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If the decomposition is depicted as:

$$PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)\Delta H = 124.0 k J \mathrm{mol}^{-1}$$

a. Write an expression of K_c for the reaction.

b. What is the value of K_c for the reverse reaction at the same temperature?

c. What would be effect on K_c if

(i) more PCl_5 is added (ii) pressure is increased (iii) the temperature in increased.

20. Explain the concept of Bronsted acids and Bronsted bases. Illustrate the answer with suitable examples.

21. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.

a. OH^{-} b. F^{-} c. H^{+} d. BCl_{3}

Watch Video Solution

22. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.

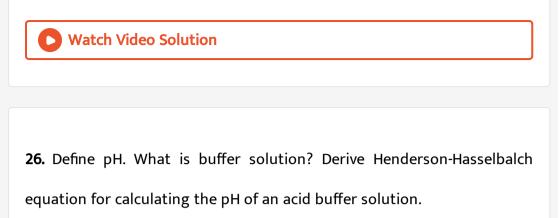
a. $OH^{\,-}$ b. $F^{\,-}$ c. $H^{\,+}$ d. BCl_3

23. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.

a. $OH^{\,-}$ b. $F^{\,-}$ c. $H^{\,+}$ d. BCl_3

Watch Video Solution

24. Explain Lewis acid base theory with suitable example. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base.


a. $OH^{\,-}$ b. $F^{\,-}$ c. $H^{\,+}$ d. BCl_3

25. What is degree of ionization is respect of weak acids and weak bases?

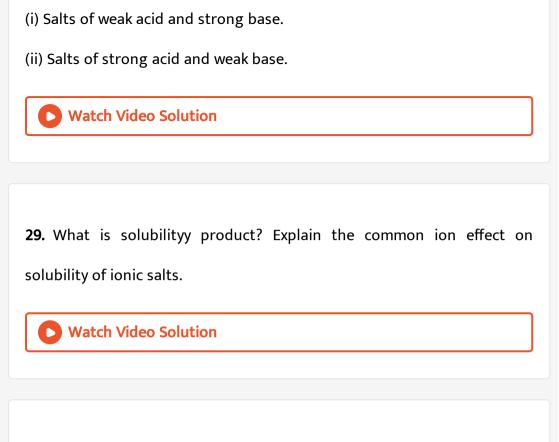
Derive the relationship between degree of ionization (α) and ionization

constant (K_a) for thke weak acid HX.

Watch Video Solution

27. Explain the term Hydrolysis of salts with examples. Discuss the pH of

the following types of salt solutions.


(i) Salts of weak acid and strong base.

(ii) Salts of strong acid and weak base.

28. Explain the term Hydrolysis of salts with examples. Discuss the pH of

the following types of salt solutions.

30. Write notes on

(i) Common ion effect

(ii) The relation between K_{sp} and solubility (S) of a sparingly soluble salt

 $BaSO_4$.

31. Write notes on

(i) Common ion effect

(ii) The relation between K_{sp} and solubility (S) of a sparingly soluble salt

 $BaSO_4$.