

India's Number 1 Education App

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

FUNCTIONS

Solved Problems

1.
$$f\colon R-\{0\} o R$$
 is defined as $f(x)=x+rac{1}{x}$ then show that $(f(x))^2=f(x^2)+f(1)$

2. If the function f is defined by

$$f(x)=egin{cases} 3x-2,&x>3\ x^2-2,&-2\leq x\leq 2 \ ext{then find the values, if exist, of} \ 2x+1,&x<-3 \end{cases}$$

$$f(-2), f(-4), f(-7).$$

- **3.** If $A=\left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $f\colon A\to B$ is a surjection defined by $f(x)=\cos x$ then find B.
 - Watch Video Solution

- **4.** $f{:}R o R$ is a function defined by $f(x) = \dfrac{e^{\,|x|} e^{-x}}{e^x + e^{-x}}.$ Then f is:
 - Watch Video Solution

5. Determine whether the function $f\!:\!R o$ R defined by

$$f(x) = \left\{ egin{array}{ll} x, & ext{if} & x > 2 \ 5x - 2, & ext{if} & x \leq 2 \end{array}
ight.$$

is an injection or a surjection or a bijection

6. Find the domain of definition of the function y(x), given by the equation $2^x + 2^y = 2$.

Watch Video Solution

If $f\!:\!R o R$ is defined 7. as $f(x+y)=f(x)+f(y)\, orall x,\, y\in R \,\, ext{and}\,\, f(1)=7,$ then find $\sum_{1}^{n} f(r)$.

Watch Video Solution

8. If $f(x)=rac{\cos^2x+\sin^4x}{\sin^2x+\cos^4x}$ $orall x\in R$ then show that f(2012)=1.

If $f\!:\!R o R,\, a\!:\!R o R$ are

defined

f(x) = 4x - 1 and $g(x) = x^2 + 2$ then find

(qof)(x)

9.

10. If $f: R \to R, q: R \to R$ are defined by $f(x)=4x-1 \,\, {
m and} \,\, g(x)=x^2+2$ then find

$$(gof)\left(\frac{a+1}{4}\right)$$

11.

f(x) = 4x - 1 and $g(x) = x^2 + 2$ then find (fof)(x)

If $f\!:\!R o R,\,g\!:\!R o R$ are defined

by

by

12. If $f\!:\!R o R,g\!:\!R o R$ are defined

bν

$$f(x)=4x-1 \,\, {
m and} \,\, g(x)=x^2+2$$
 then find $go(fof)(0)$

Watch Video Solution

13. If $f\colon [0,3] o [0,3]$ is defined by:

$$f(x)=egin{cases} 1+x&0\leq x\leq 2\ 3-x&2< x\leq 3 \end{cases}$$
 , then show that $f[0,3]\subseteq [0,3]$ and find fof.

Watch Video Solution

14. If $f,g\colon R o R$ are defined $f(x)=egin{cases} 0 & ext{if} & x\in Q \\ 1 & ext{if} & x\in Q \end{cases}, g(x)=egin{cases} -1 & ext{if} & x\in Q \\ 0 & ext{if} & x
otin Q \end{cases}$ then find $(f\circ x)(\pi)+(g\circ f)(s)$

then find $(fog)(\pi) + (gof)(e)$.

Let
$$A = \{1, 2, 3\}, B = \{a, b, c\}, C = \{p, q, r\}.$$

 $f^{-1}og^{-1} = (gof)^{-1}$.

16. If $f\!:\!Q o Q$ is defined by f(x)=5x+4, find $f^{-1}.$

17. Find the domain of the real valued function: $f(x) = \frac{1}{6x - x^2 - 5}$

are

defined

If

bν

 $f = \{(1, a), (2, c), (3, b)\}, g = \{a, q), (b, r), (c, p)\}$ then show that

15.

 $f: A \to B, q: B \to C$

Watch Video Solution

Watch Video Solution

Watch Video Solution

 $f(x) = \frac{1}{\sqrt{x^2 - a^2}}, (a > 0)$

18. Find the domains of the real valued function

19. Find the domain of the real function
$$f(x) = \sqrt{(x+2)(x-3)}$$

21. Find the domain of the real function $f(x) = \sqrt{2-x} + \sqrt{1+x}$

function

 $f(x) = \sqrt{(x-lpha)(eta-x)}, (heta < lpha < eta).$

23. The domain of the real function f defined by $f(x) = \frac{1}{\sqrt{|x|-x}}$ is

24. Find the domains fo the following real valued functions:

(i)
$$f(x)=\sqrt{4x-x^2}$$

(ii)
$$f(x) = \sqrt{2-x} + \sqrt{1+x}$$

(iii)
$$f(x)=rac{\sqrt{3+x}+\sqrt{3-x}}{x}$$

(iv)
$$f(x)=\sqrt{|x|-x}$$
,

(v)
$$f(x) = \sqrt{x-|x|}$$

(vi)
$$f(x) = \sqrt{|x| - x}$$

25. If $f = \{(4,5), (5,6), (6,-4)\}$ and $g = \{(4,-4), (6,5), (8,5)\}$ then find:

(i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii)
$$\sqrt{f}$$
, (ix) f^2 , (x) f^3

26. If
$$f = \{(4, 5), (5, 6), (6, -4)\}$$
 and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find:
 (i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 ,

(x) f^3

27. If
$$f = \{(4,5), (5,6), (6,-4)\}$$
 and $g = \{(4,-4), (6,5), (8,5)\}$ then find:

(i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 , (x) f^3

28. If $f = \{(4, 5), (5, 6), (6, -4)\}$ and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find: (i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 , (x) f^3

then find: (i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 ,

29. If $f = \{(4, 5), (5, 6), (6, -4)\}$ and $g = \{(4, -4), (6, 5), (8, 5)\}$

(x) f^3

30. If $f = \{(4, 5), (5, 6), (6, -4)\}$ and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find:

(i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 , (x) f^3

31. If $f = \{(4, 5), (5, 6), (6, -4)\}$ and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find: (i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 ,

(x) f^3

32. If $f = \{(4,5), (5,6), (6,-4)\}$ and $g = \{(4,-4), (6,5), (8,5)\}$ then find:

(i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 , (x) f^3

33. If $f = \{(4, 5), (5, 6), (6, -4)\}$ and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find: (i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 , (x) f^3

then find: (i) f+g, (ii) f-g, (iii) 2f+4g, (iv) f+4, (v) fg, (vi) f/g, (vii) |f|, (viii) \sqrt{f} , (ix) f^2 ,

34. If $f = \{(4,5), (5,6), (6,-4)\}$ and $g = \{(4,-4), (6,5), (8,5)\}$

(x) f^{3}

35. Find the domain and range of the real valued function $f(x) = \frac{2+x}{2-x}$

36. Find the domain and range of the function $f(x) = \frac{x}{1+x^2}$.

37. Find the range of the real valued function $f(x) = \sqrt{9-x^2}$.

38. If $f(x) = x^2$ and g(x) = |x|, find the functions.

(i)
$$f + g$$

39. If $f(x) = x^2$ and g(x) = |x| then find the values of:

(i) f+g, (ii) f-g, (iii) fg, (iv) 2f, (v)
$$f^2$$
, (vi) f+3

40. If
$$f(x)=x^2$$
 and $g(x)=|x|$, find the functions.

(ii)
$$fg$$

41. If $f(x) = x^2$ and g(x) = Ixl then find the values of:

(i) f+g, (ii) f-g, (iii) fg, (iv) 2f, (v)
$$f^2$$
, (vi) f+3

42. If $f(x) = x^2$ and g(x) = |x|, then find (v) f^2

43. If
$$f(x)=x^2 \,\, ext{and} \,\, g(x)=|x|$$
 , then find (vi) $f+3$

44. Determine whether the function $f(x) = a^x - a^{-x} + \sin x$ is even or odd.

45. Determine whether the function $f(x) = x \left(rac{e^x - 1}{e^x + 1}
ight)$ is even or odd

46. Determine whether the function $f(x) = \log\Bigl(x + \sqrt{x^2 + 1}\Bigr)$ is even or odd.

47. Find the domain of the following real valued functions:

(i)
$$f(x)=rac{1}{\sqrt{|x|-3}}$$
 (ii) $f(x)=rac{1}{\sqrt{2-|x|}}$

(ii)
$$f(x)=rac{1}{\sqrt{2-|x|}}$$

(iii)
$$f(x)=rac{1}{\sqrt{\leftert x
ightert ^{2}-\leftert x
ightert -2}}$$

48. Find the domains of the real valued function

$$f(x) = \log(x - [x])$$

49. Find the domains of the real valued function

$$f(x) = \sqrt{\log_{10}\!\left(rac{3-x}{x}
ight)}$$

50. Find the domains of the real valued function

$$f(x) = \sqrt{x+2} + rac{1}{\log_{10}(1-x)}$$

51. Find the domains of the real valued function

$$f(x) = rac{\sqrt{3+x}+\sqrt{3-x}}{x}$$

52. If $f\colon A\to B$ and $g\colon B\to C$ are two injective functions the prove that $gof\colon A\to C$ is also an injection.

53. If $f\colon A\to B$ and $g\colon B\to C$ are two injective functions the prove that $gof\colon A\to C$ is also an injection.

54. If $f\colon A o B$ and $g\colon B o C$ are two bijective functions then prove that $gof\colon A o C$ is also a bijection.

55. If $f\colon A o B$ and $g\colon B o C$ are two injective functions the prove that $gof\colon A o C$ is also an injection.

56. If $f\colon A\to B$ and $g\colon B\to C$ and $h\colon C\to D$ are functions then prove that h o (gof) = (hog) of

57. If $f\colon A o B$ is a function and I_A,I_B are identify functions on A,B respectively then prove that $foI_A=f=I_B$ of

58. Let A and B be two non-empty sets. If $f\colon A o B$ is a bijection, then $f^{-1}\colon B o A$ is also a bijection.

59. If $f\colon A o B$ is a bijective function then prove that

(ii)
$$f^{-1}of = I_A$$
.

60. If $f\colon A o B$ and $g\colon B o A$ are two functions such that $gof=I_A$ and $fog=I_B$ then $g=f^{-1}$.

61. If $f\!:\!A o B,g\!:\!B o C$ are two bijective functions then P.T $(\operatorname{gof})^{-1}=f^{-1}\operatorname{og}^{-1}$

Textual Exercises Exercise 1 A

1. If the function f is defined by

$$f(x) = egin{cases} x+2 & x>1 \ 2 & -1 \leq x \leq 1 \ x-1 & -3 < x < -1 \end{cases}$$
 , then find the value of:

(i) f(3), (ii) f(0), (iii) $f(\,-\,1.5)$, (iv) $f(2)+f(\,-\,2)$, (v) $f(\,-\,5)$

2. If the function f is defined by

$$f(x) = egin{cases} x+2 & x>1 \ 2 & -1 \leq x \leq 1 \ x-1 & -3 < x < -1 \end{cases}$$
 , then find the value of:

(i) f(3), (ii) f(0), (iii)
$$f(-1.5)$$
, (iv) $f(2)+f(-2)$, (v) $f(-5)$

Watch Video Solution

3. If the function f is defined by

$$f(x) = egin{cases} x+2 & x>1 \ 2 & -1 \leq x \leq 1 \ x-1 & -3 < x < -1 \end{cases}$$
 , then find the value of:

(i) f(3), (ii) f(0), (iii)
$$f(-1.5)$$
, (iv) $f(2)+f(-2)$, (v) $f(-5)$

Watch Video Solution

4. If the function f is defined by

$$f(x) = egin{cases} x+2 & x>1 \ 2 & -1 \leq x \leq 1 \ x-1 & -3 < x < -1 \end{cases}$$
 , then find the value of:

(i) f(3), (ii) f(0), (iii)
$$f(\,-\,1.5)$$
, (iv) $f(2)+f(\,-\,2)$, (v) $f(\,-\,5)$

5. If the function f is defined by

$$f(x) = egin{cases} x+2 & x>1 \ 2 & -1 \leq x \leq 1 \ x-1 & -3 < x < -1 \end{cases}$$
 , then find the value of:

(i) f(3), (ii) f(0), (iii) f(-1.5), (iv) f(2)+f(-2), (v) f(-5)

- Watch Video Solution

Watch Video Solution

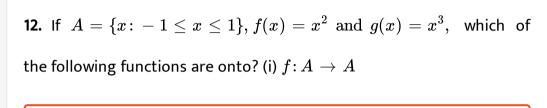
f(x) + f(1/x) = 0

Watch Video Solution

7. If $f\!:\!R o R$ is defined by $f(x)=rac{1-x^2}{1+x^2}$ then show that $f(an heta)=\cos 2 heta.$

6. If $f\!:\!R-\{0\} o R$ is defined by $f(x)=x^3-rac{1}{x^3}$, then S.T

8. If
$$f\colon R-(\pm 1) o R$$
 is defined by $f(x)=\log\Bigl|rac{1+x}{1-x}\Bigr|$, then show that $f\Bigl(rac{2x}{1+x^2}\Bigr)=2f(x).$

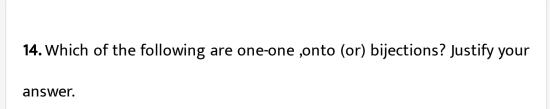

- **9.** If $A=\{-2,\ -1,0,1,2\}$ and $f\!:\!A o B$ is a surjection defined by $f(x)=x^2+x+1$ then find B.
 - Watch Video Solution

- **10.** If $A=\{1,2,3,4\}$ and $f\!:\!A o R$ is a function defined by $f(x)=rac{x^2-x+1}{x+1}$ then find the range of f.
 - **Watch Video Solution**

function.

Watch Video Solution

11. If $f(x+y)=f(xy)\, orall x,\,y\in R$ then prove that f is a constane



13. If $A=\{x\colon -1\leq x\leq 1\},$ $g(x)=x^3$, which of the following are onto?

(ii) $g:A \to A$

Watch Video Solution

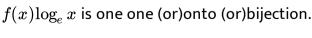
(i) $f\!:\!R o R, f(x)=rac{2x+1}{2}$

(ii) $f: N \to N, f(x) = 2x + 3$

(iv) $f: R \to R$, $f(x) = x^2$

(v) $f: R \to (0, \infty), f(x) = 5^x$

(vi) $f:(0,\infty)\to R, f(x)=\log_e^x$


Watch Video Solution

(vii) $f\!:\!R o R, f(x)=\left\{egin{array}{ll} x & ext{if} & x>2 \ 5x-2 & ext{if} & x\leq 2 \end{array}
ight.$

15. $f: R \to (0, \infty)$ defined by $f(x) = 2^x$. $then f^{-1}(x)$

(iii) $f:[0,\infty) \to [0,\infty), f(x) = x^2$

6. Determine whether the function $f\!:\!(o,\infty) o R$ defined by

17. Determine whether the function $f\!:\!R o[0,\infty)$ defined by $f(x)=x^2$ is one one (or)onto (or)bijection.

18. If $f{:}\left[0,\infty
ight)
ightarrow R$ defined by $f(x)=x^2$, then f is

19. $f\colon R o R$ defined by $f(x)=x^2$. $then f^{-1}(x)$

20.

 $A=\{1,2,3,4\}.$ to $B=\{1,3,5,7\}$? If this is given by the formula g(x)=ax+b, then find a and b.

from

Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ is a function

21. If the function $f\!:\!R o R$ defined by $f(x)=rac{3^x+3^{-x}}{2}$, then S.T

f(x + y) + f(x - y) = 2f(x)f(y).

22. If the function $f\colon R\to R$ defined by $f(x)=\frac{4^x}{4^x+2}$, then show that f(1-x)=1-f(x), and hence deduce the value of $f\Big(\frac{1}{4}\Big)+2f\Big(\frac{1}{2}\Big)+f\Big(\frac{3}{4}\Big).$

23. If the function $f\colon \{-1,1\} \to \{0,2\}$, defined by f(x)=ax+b is a surjection, then find a & b.

If $f(x) = \cos(\log x)$, then $f\left(\frac{1}{x}\right). f\left(\frac{1}{y}\right) - \frac{1}{2}\left[f\left(\frac{x}{y}\right) + f(xy)\right] = 0$

$$\frac{f\left(\frac{1}{x}\right)\cdot f\left(\frac{1}{y}\right) - \frac{1}{2}\left[f\left(\frac{1}{y}\right) + f(xy)\right]}{}$$
Watch Video Solution

Textual Exercises Exercise 1 B

24.

1. If
$$f(x)=e^x$$
 and $g(x)=\log_e x$, then show that fog=gof and find f^{-1} and g^{-1} .

2. If $f(y) = \frac{y}{\sqrt{1-y^2}}$, $g(y) = \frac{y}{\sqrt{1+y^2}}$ then show that $(\log)(y) = y$

show

that

3. If $f\!:\!R o R$ and $g\!:\!R o R$ are defined by $f(x)=2x^2+3$ and g(x)=3x-2, then find:

(i)
$$(fog)(x)$$
, (ii) $(gof)(x)$, (iii) $(fof)(0)$, (iv) $(go(fof))(3)$

4. If $f\!:\!R o R,g\!:\!R o R$ are defined by $f(x)=2x^2+3$ and g(x)=3x-2, then find

(gof)(x)

5. If $f\!:\!R o R,g\!:\!R o R$ are defined by $f(x)=2x^2+3$ and g(x)=3x-2, then find (fof)(0)

If $f:R \to R, q:R \to R$ are $f(x) = 2x^2 + 3$ and g(x) = 3x - 2, then find go(fof)(3).

6.

Watch Video Solution

If $f\!:\!R o R,\,g\!:\!R o R$ are defined 7. by $f(x) = 3x - 1, g(x) = x^2 + 1$, then find $(fof)(x^2+1)$

defined

by

by

If $f\colon R o R,\, g\colon R o R$ are defined 8. $f(x) = 3x - 1, g(x) = x^2 + 1$ then find

(i) (fog)(2)

9. If $f\!:\!R o R,g\!:\!R o R$ are

are defined

by

f(x)=3x-1, $g(x)=x^2+1,\,$ then find

Watch Video Solution

10. If f(x)=1/x, $g(x)=\sqrt{x}$ for all $x\in(0,\infty)$, then find (gof)(x).

11. If f(x)=2x-1, $g(x)=rac{x+1}{2}$ for all $x\in R$, find (gof)(x)

12. If f(x)=2, $g(x)=x^2,$ h(x)=2x then find (fogoh)(x)

13. Find the inverse of the following functions:

If $a,b\in R, f\!:\!R o R$ defined by f(x)=ax+b(a
eq 0),

- (ii) $f{:}R o (0,\infty)$ defined by $f(x) = \log_2 x$
 - Watch Video Solution

14. $f{:}\,R o (0,\infty)$ defined by $f(x) = 5^x.\,thenf^{\,-1}(x)$

15. $f: R \to (0, \infty)$ defined by $f(x) = \log_2(x)$. then $f^{-1}(x)$

- Watch Video Solution
- - Watch Video Solution
 - **16.** If $f(x)=1+x+x^2+\ldots$ for |x|<1 then show that $f^{-1}(x)=rac{x-1}{x}.$
 - Watch Video Solution

17. If $f\colon [1,\infty) o [1,\infty)$ is defined by $f(x) = 2^{x\,(\,x\,-\,1\,)}$ then find $f^{\,-\,1}(x).$

18. If $f(x)=rac{x-1}{x+1}, x
eq \pm 1$, show that $fof^{-1}(x)=x$.

19. If

 $A=\{1,2,3\}, B=(lpha,eta,\gamma), c=(p,q,r) \ ext{and} \ (f\!:\!A o B,g\!:\!B o C$ are defined by $f=\{(1,lpha),(2,\gamma),(3,eta)\}, g=\{(lpha,q),(\gamma,p)\}$ then

show that f and g are bijective functions and $\left(gof\right)^{-1}=f^{-1}og^{-1}.$

20. If $f\!:\!R\to R, g\!:\!R\to R$ defined by $f(x)=3x-2, g(x)=x^2+1,$ then find:

(i)
$$\left(gof^{-1}\right)(2)$$
, (ii) $\left(gof\right)(x-1)$

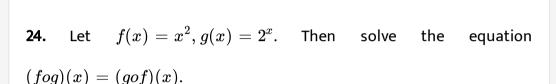
21. If
$$f\!:\!R\to R, g\!:\!R\to R$$
 defined by $f(x)=3x-2, g(x)=x^2+1,$ then find:

 $f = \{(1, a), (2, c), (4, d), (3, b)\}$ and $g^{-1} = \{(2, a), (4, b), (1, c), (3, d)\}$

Let

(i) $(gof^{-1})(2)$, (ii) (gof)(x-1)

22.


Watch Video Solution

then show that $(gof)^{-1} = f^{-1}og^{-1}$.

23. If $f\!:\!R o R,g\!:\!R o R$ are defined by

$$f(x)=2x-3,$$
 $g(x)=x^3+5$ then find $(\log)^{-1}(x)$

25. If
$$f(x)=rac{x+1}{x-1}, (x
eq \pm 1)$$
 then find (fofof) (x) and (fofofof) (x).

Watch Video Solution

Textual Exercises Exercise 1 C

1. Find the domains of the followings real valued functions:

(i)
$$f(x) = rac{2x^2 - 5x + 7}{(x-1)(x-2)(x-3)}$$

(ii)
$$f(x) = \frac{1}{(x^2-1)(x+3)}$$

(ii)
$$f(x)=rac{1}{(x^2-1)(x+3)}$$
 (iii) $f(x)=rac{1}{6x-x^2-5},$ (iv) $f(x)=rac{1}{x+|x|}$

(iv)
$$f(x)=rac{1}{x+|x|}$$

2. Find the domains of the followings real valued functions:

(i)
$$f(x) = rac{2x^2 - 5x + 7}{(x-1)(x-2)(x-3)}$$

(ii)
$$f(x) = \frac{1}{(x^2 - 1)(x + 3)}$$

(iii)
$$f(x)=rac{1}{6x-x^2-5}$$
,

(iv)
$$f(x)=rac{1}{x+|x|}$$

3. Find the domain of the following real valued functions:

(i)
$$f(x)=rac{1}{\sqrt{x^2-a^2}}(a>0)$$

(ii)
$$f(x)=rac{\sqrt{x^2-a^2}}{\sqrt{1-x^2}}$$

(iii)
$$f(x) = \sqrt[4]{x^2-1} + rac{1}{\sqrt{(x^2-3x+2)}}$$

(iv)
$$f(x)=rac{1}{\sqrt{|x|+x}}$$
 (v) $f(x)=rac{1}{\log(2-x)}$

4. Find the domains of the real valued function

$$f(x) = |x - 3|$$

5. Find the domains fo the following real valued functions:

(i)
$$f(x) = \sqrt{4x - x^2}$$

(ii)
$$f(x) = \sqrt{2-x} + \sqrt{1+x}$$

(iv)
$$f(x) = \sqrt{|x|-x}$$
, (v) $f(x) = \sqrt{x-|x|}$

(iii) $f(x)=rac{\sqrt{3+x}+\sqrt{3-x}}{x}$

(vi)
$$f(x) = \sqrt{|x| - x}$$

(i)
$$f(x) = \frac{1}{\sqrt{x^2 - a^2}} (a > 0)$$

(ii)
$$f(x)=rac{\sqrt{x^2-a^2}}{\sqrt{1-x^2}}$$

(iii)
$$f(x)=\sqrt{x^2-1}+rac{1}{\sqrt{(x^2-3x+2)}}$$
 (iv) $f(x)=rac{1}{\sqrt{|x|+x}}$

(v)
$$f(x) = \frac{1}{\log(2-x)}$$

7. Find the domains of the real valued function

$$f(x) = \frac{3^x}{x+1}$$

Watch Video Solution

8. Find the domain of the following real valued functions:

(i)
$$f(x)=\sqrt{x^2-25}$$

(ii)
$$f(x)=\sqrt{x^2-3x+2}$$
,

(iii)
$$f(x)=rac{\sqrt{2+x}+\sqrt{2-x}}{x}$$

Watch Video Solution

9. Find the domains fo the following real valued functions:

(i)
$$f(x)=\sqrt{4x-x^2}$$

(ii)
$$f(x) = \sqrt{2-x} + \sqrt{1+x}$$

(iii)
$$f(x)=rac{\sqrt{3+x}+\sqrt{3-x}}{x}$$

(iv)
$$f(x)=\sqrt{|x|-x}$$
,

(v)
$$f(x) = \sqrt{x - |x|}$$

(vi)
$$f(x) = \sqrt{|x| - x}$$

10. Find the domains fo the following real valued functions:

(i)
$$f(x) = \sqrt{4x - x^2}$$

(ii)
$$f(x) = \sqrt{2-x} + \sqrt{1+x}$$

(ii)
$$f(x) = \sqrt{2 - x} + \sqrt{1 + x}$$

(iii)
$$f(x)=rac{\sqrt{3+x}+\sqrt{3-x}}{x}$$

(iv)
$$f(x) = \sqrt{|x| - x}$$
,

(v)
$$f(x) = \sqrt{x-|x|}$$

(vi)
$$f(x) = \sqrt{|x| - x}$$

11. Find the range of the function $f(x) = \log \lvert 4 - x^2 vert$

12. Find the ranges of the real valued function

$$\sqrt{[x]-x}$$

13. Find the ranges of the real valued function $\frac{\sin \pi[x]}{1+|x|^{2}}$

14. Find the range of the function $\frac{x^2-4}{x-2}$

15. Find the ranges of the real valued function

16. If f and g are real valued functions define by
$$f(x)=2x-1 \ {
m and} \ g(x)=x^2$$
 then find (i) $(3f-2g)(x)$

17. If f and g are real valued functions define by $f(x)=2x-1 \,\, {
m and} \,\, g(x)=x^2$ then find (ii) (fg)(x)

18. If f and g are real valued functions define by $f(x)=2x-1 \, \text{ and } \, g(x)=x^2 \, \text{then find (iv)} \, \bigg(\frac{\sqrt{f}}{g}\bigg)(x)$

19. If f and g are real valued functions defined by f(x)=2x-1 and $g(x)=x^2$ then find

(ii) (f+g+2)(x).

(i)
$$2f$$
.

20. If $f = \{(1, 2), (2, -3), (3, -1) \text{ then find }$

21. If $f = \{(1,2), (2,-3), (3,-1)\}$ then find (i) 2+f

22. If $f = \{(1,2), (2,-3), (3,-1)\}$ then find (ii) f^2

23. If $f = \{(1,2), (2,-3), (3,-1)\}$ then find \sqrt{f}

Watch Video Solution

24. Find the domain of the following real valued functions:

(i)
$$f(x)=\sqrt{x^2-25}$$

(ii)
$$f(x)=\sqrt{x^2-3x+2}$$
,

(iii)
$$f(x)=rac{\sqrt{2+x}+\sqrt{2-x}}{x}$$

25. Find the domain of the real function $\log(x^2-4x+3)$

26. Find the domain of the following real valued functions:

(i)
$$f(x)=\sqrt{x^2-25}$$

$$\text{(ii) } f(x) = \sqrt{x^2 - 3x + 2},$$

(iii)
$$f(x)=rac{\sqrt{2+x}+\sqrt{2-x}}{x}$$

27. Find the domains of the real valued function

$$f(x) = \frac{1}{3\sqrt{(x-2)}\log_{(4-x)} 10}$$

28. Find the domains of the real valued function

$$f(x)=\sqrt{rac{2-x^2}{[x]+2}}$$

the domian of Find the real valued function 29.

$$f(x) = \sqrt{\log_{0.3} \left(x - x\right)^2}$$

Watch Video Solution

30. Find the domains of the followings real valued functions:

(i)
$$f(x) = \frac{2x^2 - 5x + 7}{(x - 1)(x - 2)(x - 3)}$$

(ii)
$$f(x) = \frac{1}{(x^2-1)(x+3)}$$

$$(x^2-1)(x+3)$$

(iii)
$$f(x) = \frac{1}{6x - x^2 - 5}$$
,

(iv)
$$f(x)=rac{1}{x+|x|}$$

Watch Video Solution

31. P.T the real valued function $f(x) = rac{x}{e^x - 1} + rac{x}{2} + 1$ is an even function on $R - \{0\}$.

32. Find the domian and range of the function

$$f(x) = \frac{\tan \pi[x]}{1+\sin \pi[x]+[x^2]}$$

- **33.** Find the domain and range of the function $f(x) = \frac{x}{2-3x}$
 - Watch Video Solution

- **34.** Find the domain and range of the function f(x) = |x| + |1 + x|
 - Watch Video Solution