

MATHS

NCERT - NCERT Maths(KANNADA)

REAL NUMBERS

Example

1. Show that every positive even integer is of the form 2q, and that every positive odd integer is of the form 2q + 1, where q is some integer.

2. Show that every positive odd integer is of the form 4q + 1 or 4q + 3, where q is some integer.

Watch Video Solution

3. Consider the numbers of the form 4^n where n is a natural number. Check whether there is any value of n for which 4^n ends with zero?

4. Find the HCF and LCM of 12 and 18 by the prime factorization method.

5. Using the above theorems, without actual division, state whether decimal form of the following rational numbers are terminating or non-terminating, repeating decimals.

(i)
$$\frac{6}{125}$$
 (ii) $\frac{25}{32}$ (iii) $\frac{100}{81}$ (iv) $\frac{41}{75}$

6. Write the decimal form of the following rational numbers without actual division.

- (i) $\frac{35}{50}$ (ii) $\frac{21}{25}$ (iii) $\frac{7}{8}$
 - Watch Video Solution

- **7.** Show that $\sqrt{2}$ is irrational.
 - Watch Video Solution

- **8.** Show that $5-\sqrt{3}$ is irrational.
 - **Watch Video Solution**

9. Show that $3\sqrt{2}$ is irrational.

10. Prove that $\sqrt{2}+\sqrt{2}$ is irrational .

11. Expand $\log \frac{343}{125}$

12. Write 2log3+ 3log5 - 5log2 as a single logarithm.

13. Solve $3^x = 5^{x-2}$

14. Find x if $2\log 5 + \frac{1}{2}\log 9 - \log 3 = \log x$

1. Find q and r for the following pairs of positive integers a and b, satisfying a = bq + r.

$$a = 13, b = 3$$

2. Find q and r for the following pairs of positive integers a and b, satisfying a = bq + r.

$$a = 80, b = 8$$

3. Find q and r for the following pairs of positive integers a and b, satisfying a = bq + r.

$$a = 125, b = 5$$

4. Find q and r for the following pairs of positive integers a and b, satisfying a = bq + r.

$$a = 132, b = 11$$

5. Find the HCF of the following by using Euclid algorithm.

50 and 70

6. Find the HCF of the following by using Euclid algorithm.

96 and 72

7. Find the HCF of the following by using Euclid algorithm.

300 and 550

8. Find the HCF of the following by using Euclid algorithm.

1860 and 2015

9. Express 2310 as a product of prime factors.

10. Find the HCF and LCM of the following given pairs of numbers by prime factorisation method . 120,90

11. Find the HCF and LCM of the following given pairs of numbers by prime factorisation method .

12. Find the HCF and LCM of the following given pairs of numbers by prime factorisation method . 37,49

13. Write the following terminating decimals in the form of $\frac{p}{q}, \ \neq 0$ and p,q are co primes

15.265

Write the denominators in 2^n5^m form

Watch Video Solution

14. Write the following terminating decimals in the form of $\frac{p}{q}, \ \neq 0$ and p,q are co primes 0.1255

Write the denominators in 2^n5^m form

15. Write the following terminating decimals in the form of $\frac{p}{q}, \ \neq 0$ and p,q are co primes

0.4

Write the denominators in 2^n5^m form

Watch Video Solution

16. Write the following terminating decimals in the form of $\frac{p}{q}, \ \neq 0$ and p,q are co primes

23.34

Write the denominators in 2^n5^m form

17. Write the following terminating decimals in the form of $\frac{p}{q},\ \neq 0$ and p,q are co primes

Write the denominators in 2^n5^m form

18. Write the denominator of the following rational numbers in 2^n5^m form where n and m are nonnegative integers and then write them in their decimal form

1215.8

watch video Solution

19. Write the denominator of the following rational numbers in 2^n5^m form where n and m are nonnegative integers and then write them in their decimal form

 $\frac{7}{25}$

20. Write the denominator of the following rational numbers in 2^n5^m form where n and m are nonnegative integers and then write them in their

decimal form

 $\frac{51}{64}$

Watch Video Solution

21. Write the denominator of the following rational numbers in 2^n5^m form where n and m are nonnegative integers and then write them in their decimal form

 $\overline{25}$

22. Write the denominator of the following rational numbers in 2^n5^m form where n and m are nonnegative integers and then write them in their decimal form

 $\frac{80}{100}$

23. Write the following rational numbers in the decimal form and find out the block of repeating digits in the quotient.

 $\frac{1}{3}$

watch video Solution

24. Write the following rational numbers in the decimal form and find out the block of repeating digits in the quotient.

 $\frac{2}{7}$

25. Write the following rational numbers in the decimal form and find out the block of repeating digits in the quotient.

 $\frac{5}{11}$

26. Write the following rational numbers in the decimal form and find out the block of repeating digits in the quotient.

 $\frac{10}{13}$

Watch Video Solution

27. Evaluate

 2^1

$$(4.73)^0$$

29. Evaluate

 0^3

30. Evaluate

$$(-1)^4$$

$$(0.25)^{-1}$$

32. Evaluate

$$\left(\frac{5}{4}\right)^2$$

33. Evaluate

$$\left(1\frac{1}{4}\right)^2$$

Watch Video Solution

34. (a) Express 10, 100, 1000, 10000, is exponential form

- (b) Express in simplest exponential form
- (i) 16×64 (ii) 25×125 (iii) $128 \div 32$

35. Write the following in logarithmic form.

$$7 = 2^{x}$$

Watch Video Solution

36. Write the following in logarithmic form.

$$10 = 5^b$$

Watch Video Solution

37. Write the following in logarithmic form.

$$\frac{1}{81} = 3$$

38. Write the following in logarithmic form.

$$100 = 10^z$$

39. Write the following in logarithmic form.

$$\frac{1}{257} = 4^{\circ}$$

40. Write the following in exponential form.

 $\log_{10} 100 = 2$

Watch Video Solution

41. Write the following in exponential form.

 $\log_5 25 = 2$

Watch Video Solution

42. Write the following in exponential form.

 $\log_2 2 = 1$

43. Express the logarithms of the following as the sum of the logarithm

 35×46

44. Express the logarithms of the following as the sum of the logarithm

235 imes 437

45. Express the logarithms of the following as the sum of the logarithm

2437 imes 3568

46. Express the logarithms of the following as the difference of logarithms

 $\frac{23}{34}$

47. Express the logarithms of the following as the difference of logarithms

 $\frac{373}{275}$

48. Express the logarithms of the following as the difference of logarithms

 $4325 \div 3734$

49. Express the logarithms of the following as the difference of logarithms

 $5055 \div 3303$

Watch Video Solution

50. Using $\log_a x^n = n \log_a x$, expand the following $\log_2 7^{25}$

Note: $\log x = \log_{10} x$

51. Using $\log_a x^n = n \log_a x, \,$ expand the following $\log_5 8^{50}$

Note: $\log x = \log_{10} x$

52. Using $\log_a x^n = n \log_a x, \,$ expand the following $\log 5^{23}$

Note: $\log x = \log_{10} x$

53. Using $\log_a x^n = n \log_a x$, expand the following

log 1024

Note: $\log x = \log_{10} x$

Watch Video Solution

Think And Discuss

1. Can you find the HCF of 1.2 and 0.12? Justify your answer.

2. If r = 0, then what is the relationship between a, b and q in a = bq + r?

Watch Video Solution

3. Does $\log_2 0$ exist ? Give reason .

Watch Video Solution

4. Prove

 $\log_b b = 1$

5. Prove

$$\log_b 1 = 0$$

Watch Video Solution

6. Prove

$$\log_x b^x = x$$

Watch Video Solution

7. Prove the quotient rule using $\frac{a^m}{a^n} = a^{m-n}$

8. We can write $\log \frac{x}{y} = \log(x.\,y^{-1})$ Can you prove that $\log \frac{x}{y} = \log x - \log y$ using product and power rules.

Watch Video Solution

9. We know that, if $7=2^x$ then $x=\log_2 7$. Then, what is the value of $2^{\log_2 7}$? Justify your answer. Generalise the above by taking some more examples for $a^{\log_a N}$

Try This

- **1.** Show that $3^n imes 4^m$ cannot end with the digit 0 or
- 5 for any natural numbers 'n'and 'm'

2. Solve the following

$$\log_2 32 = x$$

3. Solve the following

 $\log_5 625 = y$

Watch Video Solution

4. Solve the following

 $\log_{10} 10000 = z$

Watch Video Solution

5. Solve the following

 $\log_x 16 = 2$: $x^2 = 16 \Rightarrow x = \pm 4$, Is is correct

or not?

Watch Video Solution

6. We know that $\log_{10}100000=5$ Show that you get the same answer by writing $100000=1000\times100$ and then using the product rule. Verify the answer.

Watch Video Solution

7. We know $\log_2 32 = 5$. Show that we get the same answer by writing 32 as $\frac{64}{2}$ and then using

the product rule. Verify your answer.

8. We have $\log_2 32 = 5$. Show that we get the same result by writing $32 = 2^5$ and then using power rules. Verify the answer.

9. Find the value of $\log_2 32$

10. Find the value of $\log_c \sqrt{c}$

11. Find the value of $\log_{10} 0.001$

12. Find the value of $\log_{\frac{2}{3}} \frac{8}{27}$

1. Use Euclid's algorithm to find the HCF of 900 and 270

2. Use Euclid's algorithm to find the HCF of 196 and 38220

3. Use Euclid's algorithm to find the HCF of 1651 and 2032

4. Use division algorithm to show that any positive odd integer is of the form 6q + 1, or 6q + 3 or 6q + 5, where q is some integer

5. Use division algorithm to show that the square of any positive integer is of the form 3p or 3p + 1.

6. Use division algorithm to show that the cube of any positive integer is of the form 9 m, 9m + 1 or 9m + 8.

- 7. Show that one and only one out of n, n + 2 or n + 2
- 4 is divisible by 3, where n is any positive integer.

Exercise 12

1. Express each of the following numbers as a product of its prime factors.

140

2. Express each of the following numbers as a product of its prime factors.

156

3. Express each of the following numbers as a product of its prime factors.

3825

4. Express each of the following numbers as a product of its prime factors.

5005

5. Express each of the following numbers as a product of its prime factors.

7429

6. Find the LCM and HCF of the following integers by the prime factorization method.

12,15 and 21

7. Find the LCM and HCF of the following integers by the prime factorization method.

17, 23 and 29

8. Find the LCM and HCF of the following integers by the prime factorization method.

8,9 and 25

9. Find the LCM and HCF of the following integers by the prime factorization method.

72 and 108

10. Find the LCM and HCF of the following integers by the prime factorization method.

306 and 657

11. Check whether 6^n can end with the digit 0 for any natural number n.

12.

Explain

why

 $7 \times 11 \times 13 + 13$ and $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$

are composite numbers.

Watch Video Solution

Watch Video Solution

13. How will you show that (17 imes 11 imes 2) + (17 imes 11 imes 5) is a composite number? Explain.

14. What is the last digit of 6^{100} .

Watch Video Solution

Exercise 13

1. Write the following rational numbers in their decimal form and also state which are terminating and which are non-terminating, repeating decimal.

 $\frac{3}{8}$

2. Write the following rational numbers in their decimal form and also state which are terminating and which are non-terminating, repeating decimal.

Watch Video Solution

3. Write the following rational numbers in their decimal form and also state which are terminating and which are non-terminating, repeating decimal.

$$4\frac{1}{5}$$

4. Write the following rational numbers in their decimal form and also state which are terminating and which are non-terminating, repeating decimal.

 $\frac{2}{11}$

5. Write the following rational numbers in their decimal form and also state which are terminating and which are non-terminating, repeating decimal.

 $\frac{8}{125}$

6. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

 $\frac{13}{3125}$

11

7. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

8. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

 $\frac{64}{455}$

9. Without performing division, state whether the following rational numbers will have a terminating

decimal form or a non-terminating, repeating decimal form.

 $\frac{15}{1600}$

Watch Video Solution

10. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

 $\frac{29}{343}$

11. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

 $\frac{23}{2^3.5^2}$

Watch Video Solution

12. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion

 $\frac{129}{2^25^77^5}$

13. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.

 $\frac{9}{15}$

14. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating

decimal form.

 $\frac{36}{100}$

Watch Video Solution

15. Without actually performing the long division state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion 77

210

16. Write the following rationals in decimal form using

 $\frac{13}{25}$

17. Write the following rationals in decimal form using

 $\frac{15}{16}$

18. Write the following rationals in decimal form using

23 $2^{3}.5^{2}$

Watch Video Solution

19. Write the following rationals in decimal form using

7218 $3^{3}.5^{2}$

20. Write the following rationals in decimal form using

 $\frac{143}{110}$

Watch Video Solution

21. Express the following decimals in the form of $\frac{p}{q}$, and write the prime factors of q. What do you observe?

4.123

22. Express the following decimals in the form of $\frac{p}{q}$, and write the prime factors of q. What do you observe?

0.1201201

Watch Video Solution

23. Express the following decimals in the form of $\frac{p}{q}$, and write the prime factors of q. What do you observe?

 $43. \overline{12}$

24. Express the following decimals in the form of $\frac{p}{q}$, and write the prime factors of q. What do you observe?

 $0.\overline{63}$

Watch Video Solution

Exercise 14

1. Prove that the following are irrationals:

$$\frac{1}{\sqrt{2}}$$

2. Prove that the following are irrational.

$$\sqrt{3} + \sqrt{5}$$

Watch Video Solution

3. Prove that the following are irrational.

$$6 + \sqrt{2}$$

Watch Video Solution

4. Prove that the following are irrational.

$$\sqrt{5}$$

$$3+2\sqrt{5}$$

- **6.** Prove that $\sqrt{p}+\sqrt{q}$ is an irrational, where p,q are primes.
 - Watch Video Solution

1. Determine the value of the following.

 $\log_{25} 5$

Watch Video Solution

2. Determine the value of the following.

 $\log_{81} 3$

Watch Video Solution

3. Determine the value of the following.

$$\log_2\left(\frac{1}{16}\right)$$

4. Determine the value of the following. $\log_7 1$

Watch Video Solution

5. Determine the value of the following.

 $\log_x \sqrt{x}$

6. Determine the value of the following.

 $\log_2 512$

Watch Video Solution

7. Determine the value of the following.

 $\log_{10}.0.01$

Watch Video Solution

8. Determine the value of the following.

$$\log_{\frac{2}{3}} \left(\frac{8}{27} \right)$$

9. Determine the value of the following.

 $2^{2+\log_2 3}$

10. Write the following expressions as log N and find their values.

log 2 + log 5

11. Write the following expressions as log N and find their values.

 $\log_2 16 - \log_2 2$

Watch Video Solution

12. Write the following expressions as log N and find their values.

 $3\log_{64}4$

13. Write the following expressions as log N and find their values.

2 log 3 - 3 log 2

14. Write the following expressions as log N and find their values.

log 10 + 2 log 3 - log 2

15. Evaluate each of the following in terms of x and y, if it is given that $x=\log_2 3$ and $y=\log_2 5$ $\log_2 15$

16. Evaluate each of the following in terms of x and y, if it is given that $x=\log_2 3$ and $y=\log_2 5$ $\log_2 7.5$

17. Evaluate each of the following in terms of x and y, if it is given that $x=\log_2 3 \, ext{ and } \, y=\log_2 5$

 $\log_2 60$

18. Evaluate each of the following in terms of x and y, if it is given that $x=\log_2 3$ and $y=\log_2 5$ $\log_2 6750$

19. Expand the following.

 $\log 1000$

Watch Video Solution

20. Expand the following.

$$\log\!\left(\frac{128}{625}\right)$$

Watch Video Solution

21. Expand the following.

 $\log x^2 y^3 z^4$

22. Expand the following.

$$\log\!\left(\frac{p^2q^3}{r^4}\right)$$

23. Expand the following.

$$\log \sqrt{\frac{x^3}{y^2}}$$

24. f
$$x^2+y^2=25xy$$
 , then prove that 2 log(x + y) =

3log3 + logx + logy.

25. If
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2}(\log x + \log y)$$
 then find the value of $\frac{x}{y} + \frac{y}{x}$

26. If
$$(2.3)^x=(0.23)^y=1000$$
 , then find the value of $\dfrac{1}{x}-\dfrac{1}{y}$

27. If $2^{x+1} = 3^{1-x}$ then find the value of x.

28. Is (i) log 2 rational or irrational? Justify your answer.

(ii) log 100 rational or irrational? Justify your answer.

Optional Exercise

1. Can the number 6^n , n being a natural number, end with the digit 5? Give reason.

2. Is $7 \times 5 \times 3 \times 2 + 3$ a composite number? Justify your answer.

3. Prove that $\left(2\sqrt{3}+\sqrt{5}\right)$ is an irrational number.

Also check whether $\left(2\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{3}-\sqrt{5}\right)$ is rational or irrational.

- **4.** If $x^2+y^2=6xy$, prove that 2 log (x + y) = logx
- + logy + 3 log 2
 - Watch Video Solution

- **5.** Find the number of digits in 4^{2013} , if $\log_{10} 2 = 0.3010.$
 - **Watch Video Solution**