©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

PAIR OF STRAIGHT LINES

Solved Problems

1. Does the equation $x^{2}+x y+y^{2}=0$ represent a pair of lines?

- Watch Video Solution

2. Find the nature of the triangle of formed by the lines
$x^{2}-3 y^{2}=0$ and $x=2$.
3. Find the centroid and the area of the triangle formed by the lines $12 x^{2}-20 x y+7 y^{2}=0,2 x-3 y+4=0$

- Watch Video Solution

4. Prove that the lines represented by the equations $x^{2}-4 x y+y^{2}=0$ and $x+y=3$ form an equilateral triangle.

- Watch Video Solution

5. Show that the product of the perpendicular from (alpha,beta) to the pair of lines $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is $\underline{\left|a \alpha^{2}+2 h \alpha \beta+2 g \alpha+2 f \beta+c\right|}$ $\sqrt{(a-b)^{2}+4 h^{2}}$

Hence or otherwise find the
product of the perpendicular from the origin

- Watch Video Solution

6. Let $a x^{2}+2 h x y+b y^{2}=0$ represent a pair of straight lines.

Then show that the equation of the pair of straight lines.
Passing through $\left(x_{0}, y_{0}\right)$ and parallel to the given pair of lines is

$$
a\left(x-x_{0}\right)^{2}+2 h\left(x-x_{0}\right)\left(y-y_{0}\right)+b\left(y-y_{0}\right)^{2}=0
$$

D Watch Video Solution

7. Show that the area of the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0 \quad$ and $\quad \mathrm{lx}+\mathrm{my}+n=0 \quad$ is $\left|\frac{n^{2} \sqrt{h^{2}-a b}}{a m^{2}-2 h l m+b l^{2}}\right|$
8. Two equal sides of an isoceles triangle are given by $7 x-y+3=0$ and $x+y-3=0$ and the third side passes through the point $(1,10)$ then slope m of the third side is given by

D Watch Video Solution

9. Find the angle between the straight lines represented by $2 x^{2}+5 x y+2 y^{2}-5 x-7 y+3=0$

- Watch Video Solution

10. Find the equation of the pair of lines passing through the origin and parallel to the pair of lines
$2 x^{2}+3 x y-2 y^{2}-5 x+5 y-3=0$
(Watch Video Solution
11. Find the equation of the pair of lines passing through the origin and perpendicular to the pair of lines $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$

D Watch Video Solution

12. If $x^{2}+x y-2 y^{2}+4 x-y+k=0$ represents a pair of straight lines, find k.

D Watch Video Solution

13. Prove that the equation $2 x^{2}+x y-6 y^{2}+7 y-2=0$ represents a pair of straight lines.
14. Prove that the equation $2 x^{2}+3 x y-2 y^{2}-x+3 y-1=0$ represents a pair of perpendicular straight lines.

- Watch Video Solution

15. S.T the equation $2 x^{2}-13 x y-7 y^{2}+x+23 y-6=0$ represents a pair of straight lines. Also find the angle between them and the coordinates of the point of intersection of the lines.

- Watch Video Solution

16. Find the value of λ for which the equation $\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0 \quad$ represents a pair of striaght lines.
17. Show that two pairs of two straight lines $6 x^{2}-5 x y-6 y^{2}=0$ and $6 x^{2}-5 x y-6 y^{2}+x+5 y-1=0$ form a square

- Watch Video Solution

18. Show that the following equations represents a pair of parallel lines and also find the distance between them.

Show that the equation $8 x^{2}-24 x y+18 y^{2}-6 x+9 y-5=0$ represents a pair of parallel lines and find the distance between them.

D Watch Video Solution

> 19. If $a x^{2}+2 h x y+b y^{2}=0, a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
form a rhombus then prove that $(a-b) f g+h\left(f^{2}-g^{2}\right)=0$.
20. If two of the sides of a parallelogram are represented by $a x^{2}+2 h x y+b y^{2}=0$ and $p q+q y=1$ is one of its diagonals, prove that the other diagonal is $y(b p-h q)=x(a q-h p)$.

- Watch Video Solution

Exercise 4 A I

1. Find the acute angle between pair of lines represented by following equations.

$$
x^{2}-7 x y+12 y^{2}=0
$$

2. Find the acute angle between pair of lines represented by following equations.
$y^{2}-x y-6 x^{2}=0$

D Watch Video Solution

3. Find the acute angle between pair of lines represented by following equations.
$x^{2}+2 x y \cot \alpha-y^{2}=0$

- Watch Video Solution

4. Find the acute angle between pair of lines represented by following equations.
$x^{2}+2 x y \cot \alpha-y^{2}=0$
5. Show that the following pairs of lines are equally inclined to each other.
$2 x^{2}+6 x y+y^{2}=0,4 x^{2}+18 x y+b y^{2}=0, \mathrm{~b}=$

- Watch Video Solution

2. Show that the following pairs of lines are equally inclined to each other.
$a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0, a x^{2}+2 h x y+b y^{2}=0(a+b \neq 0)$

D Watch Video Solution

3. Show that the following pairs of lines are equally inclined to each other.

$$
a x^{2}+2 h x y+b y^{2}+\lambda\left(x^{2}+y^{2}\right)=0,(\lambda \in R) a x^{2}+2 h x y+b y^{2}=0
$$

D Watch Video Solution

4. Find the value of h if the slopes of the lines represented by $6 x^{2}+2 h x y+y^{2}=0$ are in the ratio 1:2.

- Watch Video Solution

5. If $a x^{2}+2 h x y+b y^{2}=0$ represents two straight lines such that slope of one line is twice the slope of the other, prove that $8 h^{2}=9 a b$.
6. Show that equation of pair of lines passing through origin and making an angle of 30° with the line $3 x-y-1=0 i s 13 x^{2}-12 x y-3 y^{2}=0$

D Watch Video Solution

7. Find the equation to the pair of lines passing through origin and making an acute angle a' with the straight line $x+y+5=0$

- Watch Video Solution

8. Show that the lines $(x+2 a)^{2}-3 y^{2}=0, x=a$ form an equilateral triangle.
9. Show that pair of bisectors of angles between the lines $(a x+b y)^{2}=c(b x-a y)^{2}(c>0)$ are parallel and perpendicular to the line $a x+b y+k=0$

D Watch Video Solution

10. The adjacent sides of a parallelogram are $2 x^{2}-5 x y+3 y^{2}=0$ and one diagonal is $x+y+2=0$. Find the vertices and the other diagonal.

- Watch Video Solution

11. Find the centriod and hence find the area of the triangle formed by the following lines

$$
2 y^{2}-x y-6 x^{2}=0 x+y+4=0
$$

12. Find the centriod and hence find the area of the triangle formed by the following lines

$$
3 x^{2}-4 x y+y^{2}=0,2 x-y=6
$$

- Watch Video Solution

13. Find the equation of pair of lines intersecting at $(2,-1)$ and Perpendicular to pair $6 x^{2}-13 x y-5 y^{2}=0$

- Watch Video Solution

14. Find the equation of pair of lines intersecting at $(2,-1)$ and Perpendicular to pair $6 x^{2}-13 x y-5 y^{2}=0$
15. Find the equation of the bisector of the acute angle between the lines $3 x-4 y+7=0,12 x+5 y-2=0$

(D) Watch Video Solution

16. Find the equation of bisector of the obtuse angle between the lines $x+y-5=0$ and $x-7 y+7=0$

- Watch Video Solution

Exercise 4 A lii

1. Show that the lines represented by
$(l x+\mathrm{my})^{2}-3(m x-l y)^{2}=0$ and $l x+\mathrm{my}+n=0$ form an equilateral triangle with area $\frac{n^{2}}{\sqrt{3}\left(l^{2}+m^{2}\right)}$.
2. Show that the straight lines represented by $3 x^{2}+48 x y+23 y^{2}=0,3 x-2 y+13=0$ form an equilateral triangle of area $\frac{13}{\sqrt{3}}$ sq. units

- Watch Video Solution

3. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$

- Watch Video Solution

4. If one jine of the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes, then prove that $(a+b)^{2}=4 h^{2}$.
5. If (α, β) is the centroid of the triangle, whose sides are $a x^{2}+2 h x y+b y^{2}=0$ and $l x+m y=1, \quad$ then show that $\frac{\alpha}{b l-h m}=\frac{\beta}{a m-h l}=\frac{2}{3\left(b l^{2}-2 h l m+a m^{2}\right)}$

- Watch Video Solution

6. Prove that the distance from the origin to the orthocentre of the triangle formed by the lines $\frac{x}{\alpha}+\frac{y}{\beta}=1$ and $a x^{2}+2 h x y+b y^{2}=0$ is $\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}$

$$
\left|\frac{(a+b) \alpha \beta}{a \alpha^{2}-2 h \alpha \beta+b \beta}\right|
$$

D View Text Solution
7. The straight line $l x+m y+n=0$ bisects and angle between the pair of lines of which one is $p x+q y+r=0$. Show that the other line is
$\left(l^{2} m^{2}\right)(p x+q y+r)=2(l p+m q)(l x+m y+n)=0$

D Watch Video Solution

Exercise 4 B I

1. Find the angle between the lines represented by $2 x^{2}+x y-6 y^{2}+7 y-2=0$.

- Watch Video Solution

2. Prove that the equation $2 x^{2}+3 x y-2 y^{2}+3 x+y+1=0$
represents a pair of perpendicular lines and find the lines.

Exercise 4 B li

1. Prove that the equation $3 x^{2}+7 x y+2 y^{2}+5 x+5 y+2=0$ represents a pair of straight lines and find the co-ordinates of the point of intersection.

- Watch Video Solution

2. Find k , if the equation $2 x^{2}+k x y-6 y^{2}+3 x+y+1=0$ represents a pair of lines. Find the point of intersection of the lines and angle between the lines for this value of k.

- Watch Video Solution

3. Show that the equation $x^{2}-y^{2}-x+3 y-2=0$ represents a pair of perpendicular lines and find their equations.

D Watch Video Solution

4.

Show
that
the
line
$x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0$ and $5 x+2 y-8=0$
are concurrent.

- Watch Video Solution

5. Show that the following equations represents a pair of parallel lines and also find the distance between them.
$9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$

- Watch Video Solution

6. Show that the following equations represents a pair of parallel lines and also find the distance between them.

$$
x^{2}+2 \sqrt{3} x y+3 y^{2}-3 x-3 \sqrt{3} y-4=0
$$

D Watch Video Solution

7. Show that two pairs of lines $3 x^{2}+8 x y-3 y^{2}=0$ and $3 x^{2}+8 x y-3 y^{2}+2 x-4 y-1=0$ forms a square.

- Watch Video Solution

Exercise 4 B lif

1. Find the product of lengths of perpendiculars drawn from $(2,1)$ upon the lines $12 x^{2}+25 x y+12 y^{2}+10 x+11 y+2=0$
2. Show that the
$y^{2}-4 y+3=0$ and $x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$ form a parallelogram and find the length of its sides.

- Watch Video Solution

3. Show that product of the perpendicular distances from origin to

$$
\begin{array}{lcc}
\text { pair of lines } & \text { represented } \\
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 & \text { is } \frac{|c|}{\sqrt{(a-b)^{2}+4 h^{2}}}
\end{array}
$$

- Watch Video Solution

4. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of lines, then show that the square of the
distance of their point of intersection from the origin is $\frac{c(a+b)-f^{2}-g^{2}}{a b-h^{2}}$. Also show that the square of this distance is $\frac{f^{2}+g^{2}}{h^{2}+b^{2}}$ if the given lines are perpendicular.

D Watch Video Solution

Exercise 4 C I

1. Find the equation of the lines joining the origin to the points of intersection of $x^{2}+y^{2}=1$ and $x+y=1$.

- Watch Video Solution

2. Find the angle between the lines joining the origin to the points of intersection of $y^{2}=x$ and $x+y=1$.
3. Show that the lines joining the origin to the points of intersection of the curve $x^{2}+x y+y^{2}+3 x+3 y-2=0$ and the straight line $x-y-\sqrt{2}=0$ are mutually perpendicular .

D Watch Video Solution

2. Find the value if k, if the lines joining the origin with the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the $x+2 y=k$ are mutually perpendicular .

- Watch Video Solution

3. Find the angle between the lines joining the origin to the points of intersection of the curve $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$ and
the line $3 x-y+1=0$.

- Watch Video Solution

Exercise 4 C lif

1. Find the condition for the chord $\mathrm{lx}+\mathrm{my}=1$ of the circle $x^{2}+y^{2}=a^{2}$ to subtend a right angle at the origin.

- Watch Video Solution

2. Find the condition for the lines joining the origin to the points of intersection of the circle $x^{2}+y^{2}=a^{2}$ and the line $\mid \mathrm{x}+\mathrm{my}=1$ to coincide.
3. Write down the equation of the pair of straight lines joining the origin to the points of intersection of the $6 x-y+8=0$ with the pair of straight lines $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$. Show that the lines so obtained make equal angles with the coordinates axes.
