

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

PRODUCT OF VECTORS

1. Find the angle between the vectors $\vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{j} = \vec{j} + 2\vec{k}$.

Watch Video Solution

2. If the vectors $2ar{i}+\lambdaar{j}-ar{k}$ and $4ar{i}-2ar{j}+2ar{k}$ are perpendicular to each

other than find λ .

3. For what values of λ the vectors $\overline{i} - \lambda \overline{j} + 2\overline{k}, 8\overline{i} + 6\overline{j} - \overline{k}$ are at right angles.

4.
$$\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} - 3\hat{j} - 5\hat{k}$$
. Find the vector \vec{c} such that \vec{a}, \vec{b} and \vec{c} form the sides of a triangle.

Watch Video Solution

Watch Video Solution

5. Find the angle between the planes

$$\overrightarrow{r}.\left(2\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k}
ight)=3$$
 an $\overrightarrow{r}.\left(3\overrightarrow{i}+6\overrightarrow{j}+\overrightarrow{k}
ight)=4.$

6. Let $\overrightarrow{e_1}$ and $\overrightarrow{e_2}$ be unit vectors making angle θ . If $\frac{1}{2} \left| \overrightarrow{e_1} - \overrightarrow{e_2} \right| = \sin \lambda \theta$,

then find λ .

7. Let
$$\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$
 and $\overrightarrow{b} = 2\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}$. Find

(i) The projection vector of \overrightarrow{b} on \overrightarrow{a} and its magnitude.

Watch Video Solution

8. Find the equation of the plane passing through the point (3,-2,1) and

perpendicular to the vector (4,7,-4)

9. If
$$\overrightarrow{a} = 2\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}$$
, $\overrightarrow{b} = 3\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$, then find the angle between $2\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} + 2\overrightarrow{b}$.

Exercise 5 A li

1. Find unit vector parallel to the XOY-plane and perpendicular to the vector $4ar{i}-3ar{j}+ar{k}.$

Watch Video Solution

2. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 5$ and $\left|\overrightarrow{c}\right| = 7$, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

3. If
$$\left|\overrightarrow{a}\right| = 2$$
, $\left|\overrightarrow{b}\right| = 3$ and $\left|\overrightarrow{c}\right| = 4$ and each of $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ is perpendicular to the sum of the other two vectors, then find the magnitude of $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$.

4. Find the equation of the plane passing through the point $\bar{a} = 2\bar{i} + 3\bar{j} - \bar{k}$ and perpendicular to the vector $3\bar{i} - 2\bar{j} - 2\bar{k}$ and the distance of this plane from the oringin.

Watch Video Solution

5. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and \overrightarrow{d} are the position vectors of four complanar points such that $\left(\overrightarrow{a} - \overrightarrow{d}\right)$. $\left(\overrightarrow{b} - \overrightarrow{c}\right) = \left(\overrightarrow{b} - \overrightarrow{d}\right)$. $\left(\overrightarrow{c} - \overrightarrow{a}\right) = 0$. Show that the point \overrightarrow{d} represents the orthocentre of the triangle with $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} as its vertices.

Watch Video Solution

Exercise 5 A lii

1. Show that the points (5,-1,1),(7,-4,7),(1,-6,10) and (-1,-3,4) are the vertices of

a rhombus.

2. Let $\bar{a} = 4\bar{i} + 5\bar{j} - \bar{k}$, $\bar{b} = \bar{i} - 4\bar{j} + 5\bar{k}$ and $c = 3\bar{i} + \bar{j} - \bar{k}$. Find the vector which is perpendicular to both \bar{a} and \bar{b} whose magnitude is twenty one times the magnitude of \bar{c} .

Watch Video Solution

3. G is centroid of ΔABC and a,b,c are the lengths of the sides BC, CA

and AB respectively. Prove that $a^2 + b^2 + c^2 = 3\left(\overline{OA}^2 + \overline{OB}^2 + \overline{OC}^2\right) - 9\left(\overline{OG}\right)^2$ where O is any

point.

4. If a line makes angles α , β , λ , δ with the four diagonals of a cube, then show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \lambda + \cos^2 \delta = \frac{4}{3}$.

Watch Video Solution

Exercise 5 B I

1. If
$$\left|\overline{P}\right|=2, \left|ar{q}
ight|=3 \,\, ext{and} \,\, (ar{p},ar{q})=rac{\pi}{6},$$
 then find $\left|ar{p} imesar{q}
ight|^2$

Watch Video Solution

2. If
$$\overrightarrow{a} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$$
 and $\overrightarrow{b} = \overrightarrow{i} - 3\overrightarrow{j} - 5\overrightarrow{k}$, then find $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$.

3. If
$$\overrightarrow{a} = 2\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}$$
 and $\overrightarrow{b} = \overrightarrow{i} + 4\overrightarrow{j} - 2\overrightarrow{k}$, then find $\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \left(\overrightarrow{a} - \overrightarrow{b}\right)$.

4. If
$$4ar{i}+rac{2p}{3}ar{j}+par{k}$$
 is parallel to the vector $ar{i}+2ar{j}+3ar{k}$, find p.

5. Compute
$$\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) + \overrightarrow{b} \times \left(\overrightarrow{c} + \overrightarrow{a}\right) + \overrightarrow{c} \times \left(\overrightarrow{a} + \overrightarrow{b}\right)$$
.

Watch Video Solution

6. If
$$\overrightarrow{p} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$
, find the value of $\left| \overrightarrow{p} \times \overrightarrow{k} \right|^2$.

Watch Video Solution

7. Compute
$$2\overrightarrow{j} \times \left(3\overrightarrow{i} - 4\overrightarrow{k} \right) + \left(\overrightarrow{i} + 2\overrightarrow{j} \right) \times \overrightarrow{k}$$
.

View Text Solution

12. Find the area of the triangle having $(3\overline{i}+4\overline{j}), (-5\overline{i}+7\overline{j})$ as adjacent sides.

1. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, then prove that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

$$\overrightarrow{a} = 2\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}, \ \overrightarrow{b} = -\overrightarrow{i} + 2\overrightarrow{j} - 4\overrightarrow{k} \ ext{and} \ \overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k},$$

then find $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$. $\left(\overrightarrow{b} \times \overrightarrow{c}\right)$.

3. Find the vector area and area of the parallelogram having $\bar{a} = \bar{i} + 2\bar{j} - \bar{k}, \bar{b} = 2\bar{i} - \bar{j} + 2\bar{k}$ as adjacent sides.

Watch Video Solution

4. If $ar{a} imesar{b}=ar{b} imesar{c}
eq 0$, then show that $ar{a}+ar{c}=ar{p}ar{b}$, where p is some

scalar.

5. Let \overrightarrow{a} and \overrightarrow{b} be vectors, satisfying $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = 5$ and $\left(\overrightarrow{a}, \overrightarrow{b}\right) = 45^{\circ}$. Find the area of the triangle having $\overrightarrow{a} - 2\overrightarrow{b}$ and $3\overrightarrow{a} + 2\overrightarrow{b}$ as two of its sides.

Watch Video Solution

6. Find the vector having magnitude $\sqrt{6}$ units and perpendicular to both

$$2\overline{i}-\overline{k}, 3\overline{j}-\overline{i}-\overline{k}.$$

Watch Video Solution

7. Find a unit vector perpendicular to the plane determined by the points

P(1, -1, 2), Q(2, 0, -1) and R(0, 2, 1).

8. If
$$\overrightarrow{a}$$
. $\overrightarrow{b} = \overrightarrow{a}$. \overrightarrow{c} and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$ and $\overrightarrow{a} \neq \overrightarrow{0}$ then show that $\overrightarrow{b} = \overrightarrow{c}$

9. Find a vector of magnitude and perpendicular to both the vectors

$$\overrightarrow{a} = 2\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k} ext{ and } \overrightarrow{b} = 2\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$$

Watch Video Solution

10. If
$$|ar{a}|=13, \, \left|ar{b}
ight|=5, \,\, ext{ and } \,\, ar{a}. \,\, ar{b}=60$$
, then find $\left|ar{a} imesar{b}
ight|.$

Watch Video Solution

11. Find the unit vector perpendicular to the plane passing through the points (1, 2, 3), (2, -1, 1) and (1, 2, -4).

1. If $\bar{a}, \bar{b}, \bar{c}$ respresents the vertices A, B, and C respectively of ΔABC then prove that $|(\bar{a} \times \bar{b}) + (\bar{b} \times \bar{c}) + (\bar{c} \times \bar{a})|$ is twice the area of ΔABC .

Watch Video Solution

2. If

$$\overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}, \overrightarrow{b} = \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$$
 and $\overrightarrow{c} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$,
then compute $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and verify that it is perpendicular to \overrightarrow{a} .

Watch Video Solution

3. If $\overrightarrow{a} = 7\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}$, $\overrightarrow{b} = 2\overrightarrow{i} + 8\overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, then verify that $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \left(\overrightarrow{a} \times \overrightarrow{b}\right) + \left(\overrightarrow{a} \times \overrightarrow{c}\right)$ (or) prove that

cross product is distributive over addition

4. If
$$\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$
, $\overrightarrow{c} = \overrightarrow{j} - \overrightarrow{k}$, then find vector \overrightarrow{b} such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$

5. $\bar{a}, \bar{b}, \bar{c}$ are three vectors of equal magnitudes and each of them is inclined at an angle of 60° to the others. If $|\bar{a} + \bar{b} + \bar{c}| = \sqrt{6}$, then find $|\bar{a}|$.

Watch Video Solution

6. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , show that $\left(1+\left|\overrightarrow{a}\right|^{2}\right)\left(1+\left|\overrightarrow{b}\right|^{2}\right) = \left|1-\overrightarrow{a}.\overrightarrow{b}\right|^{2}+\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{a}\times\overrightarrow{b}\right|^{2}$

7. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that \overrightarrow{a} is perpendicular to the plane of \overrightarrow{b} , \overrightarrow{c} and the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$ then find $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$.

Watch Video Solution

8.

$$\overrightarrow{a} = 3\overrightarrow{i} - \overrightarrow{i} + 2\overrightarrow{k}, \overrightarrow{b} = -\overrightarrow{i} + 3\overrightarrow{i} + 2\overrightarrow{k}, \overrightarrow{c} = 4\overrightarrow{i} + 5\overrightarrow{i} - 2\overrightarrow{k}$$
 and

, then compute

$$\left(\overrightarrow{a} imes \overrightarrow{b}
ight) . \overrightarrow{c} - \left(\overrightarrow{a} imes \overrightarrow{d}
ight) . \overrightarrow{b}$$

Watch Video Solution

Exercise 5 C I

1. Compute
$$\begin{bmatrix} \overrightarrow{i} & - \overrightarrow{j} & \overrightarrow{j} & - \overrightarrow{k} & \overrightarrow{k} & - & \overrightarrow{i} \end{bmatrix}$$

2. If
$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} - 3\overrightarrow{k}, \ \overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}, \ \overrightarrow{c} = i + 3\overrightarrow{j} - 2\overrightarrow{k},$$

then compute $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)$.

3. If
$$\overrightarrow{a} = (1, -1, -6)$$
, $\overrightarrow{b} = (1, -3, 4)$ and $\overrightarrow{c} = (2, -5, 3)$, then compute the following (i) \overrightarrow{a} . $\left(\overrightarrow{b} \times \overrightarrow{c}\right)$, (ii) $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$
(iii) $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$.

Watch Video Solution

4. Simplify the following

(i)
$$(i-2j+3k) imes(2i+j-k).$$
 $(j+k)$

(ii)
$$(2i - 3j + k)$$
. $(i - j + 2k) imes (2i + j + k)$.

5. Find the volume of the tetrahedron having the edges

$$,ar{i}+ar{j}+ar{k},\,ar{i}-ar{j},\,ar{i}+2ar{j}+ar{k}.$$

6. Find t, for which the vectors $2\bar{i} - 3\bar{j} + \bar{k}, \, \bar{i} + 2\bar{j} - 3\bar{k}, \, \bar{j} - t\bar{k}$ are coplanar.

Watch Video Solution

7. For non - coplanar vectors \bar{a} , \bar{b} and \bar{c} determine p for which the vectors $\bar{a} + \bar{b} + \bar{c}$, $\bar{a} + p\bar{b} + 2\bar{c}$ and $-\bar{a} + \bar{b} + \bar{c}$ are coplaner.

8. Determine λ , for which the volume of the parallelopiped having coterminus edges $\overline{i} + \overline{j}$, $3\overline{i} - \overline{j}$ and $3\overline{j} + \lambda \overline{k}$ os 16 cubic units.

9. Find the volume of the tetrahedron having the edges

$$,ar{i}+ar{j}+ar{k},\,ar{i}-ar{j},\,ar{i}+2ar{j}+ar{k}.$$

10. Let a,b and
$$\overrightarrow{c}$$
 be non-coplanar vectors and
 $\overrightarrow{\alpha} = a + 2b + 3c, \overrightarrow{\beta} = 2\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{\gamma} = 3\overrightarrow{a} - 7\overrightarrow{c}$, then find
 $\begin{bmatrix} \overrightarrow{\alpha} & \overrightarrow{\beta} & \overrightarrow{\gamma} \end{bmatrix}$:

Watch Video Solution

11. let a,b and c are non-coplanar vectors If 2vec(a)vec(b)+3vec(c),vec(a)+vec)-2vec(c),vec(a)+vec(b)-3vec(c)=lamda[vecavecbvec(c)] , then $f \in dthevalueof$ lamda`.

View Text Solution

12. Let
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} be non-coplanar vectors, if
 $\left[\overrightarrow{a}+2\overrightarrow{b} \quad 2\overrightarrow{b}+\overrightarrow{c} \quad 5\overrightarrow{c}+\overrightarrow{a}\right] = \lambda \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$, then find λ .
Watch Video Solution
13. If a,b,c are non-coplanar vectors, then find the value of
 $(a+2b-c). [(a-b) \times (a-b-c)]$
 $[a \ b \ c]$.
Watch Video Solution

14. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular unit vectors, then find the value of $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$.

Watch Video Solution

15. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non-zero vectors and \overrightarrow{a} is perpendicular to both \overrightarrow{b} and \overrightarrow{c} . If |a| = 2, $\left|\overrightarrow{b}\right| = 3$, $\left|\overrightarrow{c}\right| = 4$ and $(b, c) = \frac{2\pi}{3}$, then find

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \begin{vmatrix} \vdots \\ \hline \mathbf{O} & \mathbf{Video \ Solution} \\ \\ \mathbf{Exercise \ 5 \ C \ Ii} \\ \mathbf{1.} \quad \text{If} \quad \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix} + \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{d} \end{bmatrix} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{d} \end{bmatrix} = \begin{bmatrix} a & b & c \end{bmatrix} \\ \text{then show that the points with position vectors a,b,c and } \overrightarrow{d} \ \text{are coplanar.} \\ \\ \hline \mathbf{O} & \mathbf{Vatch \ Video \ Solution} \\ \\ \end{array}$$

2. It a,b and c are non-coplanar vectors and the four points with position vectors 2a + 3b - c, a - 2b + 3c, 3a + 4b + 2c and ka - 6b + 6c are coplanar, then k=

3. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-zero and non-collinerr vectors and $\theta \neq 0$ is the angle between \overrightarrow{b} and \overrightarrow{c} . If $(a \times b) \times c = \frac{1}{3}|b||c|a$, then find $\sin \theta$.

Watch Video Solution

4. Find the volume of the tetrahedron, whose vertices are (1, 2, 1), (3, 2, 5), (2, -1, 0), (-1, 0, 1).

Watch Video Solution

5. Show that
$$\left(\overrightarrow{a} + \overrightarrow{b}\right)$$
. $\left(\overrightarrow{b} + \overrightarrow{c}\right) imes \left(\overrightarrow{c} + \overrightarrow{a}\right) = 2[a \ \ \mathrm{b} \ \mathrm{c}].$

Watch Video Solution

6. Show that the equation of plane passing through the points with position vectors $3\overline{i} - 5\overline{j} - \overline{k}$, $-\overline{i} + 5\overline{j} + 7\overline{k}$ and parallel to the vector $3\overline{i} - \overline{j} + 7\overline{k}$ is 3x+2y-z=0

7. Prove that
$$\overrightarrow{a} \times \left[\overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)\right] = \left(\overrightarrow{a} \cdot \overrightarrow{a}\right) \left(\overrightarrow{b} \times \overrightarrow{a}\right).$$

0

8. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$$
 are coplaner vectors, then
 $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right) =$
Watch Video Solution

9. Show that
$$\left[\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{a} \times \overrightarrow{c}\right)\right)\right]$$
. $\overrightarrow{d} = \left(\overrightarrow{a} \cdot \overrightarrow{d}\right) \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$.

Watch Video Solution

10. Show that
$$\overrightarrow{\alpha}$$
. $\left[\left(\overrightarrow{\beta} + \overrightarrow{\chi} \times \left(\overrightarrow{\alpha} + \overrightarrow{\beta} + \overrightarrow{\chi}\right)\right] = 0.$

11. Find λ in order that the four points $A(3, 2, 1), B(4, \lambda, 5), C(4, 2, -2)$ and D(6, 5, -1) be coplanar.

12. Find the vector equation of the plane passing through the intersection of the planes $\bar{r}. (2\bar{i} + 2\bar{j} - 3\bar{k}) = 7, \bar{r}. = (2\bar{i} + 5\bar{j} + 3\bar{k}) = 9$ and through the point (

Watch Video Solution

13. Find the equation of the plane passing through (a,b,c) and parallel to the plane $ar{r}.~ig(ar{i}+ar{j}+ar{k}ig)=2.$

14. Find the shortest distance between the lines and

$$\vec{r} = 6\vec{i} + 2\vec{j} + 2\vec{k} + \lambda \left(\vec{i} - 2\vec{j} + 2\vec{k}\right) \& \vec{r} = -4\vec{i} - \vec{k} + \mu \left(3\vec{i} + 2\vec{j} + 2\vec{k}\right) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} - \vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} + 4\vec{i} + 4\vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} + 4\vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} + 4\vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} + 4\vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} + 4\vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} + 4\vec{k} + \mu (3\vec{i} + 2\vec{k}) \& \vec{r} = -4\vec{i} + 4\vec{k} + 4\vec{k} \& \vec{r} = -4\vec{k} + 4\vec{k} - 4\vec{k} + 4\vec{k} - 4$$

$$\overrightarrow{a} - \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}$$
 are planar.

17. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are the position vectors of the points A,B and C respectively, then prove that the vector $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$ is perpendicular to the plane of ΔABC .

4.

$$\overrightarrow{a} = 2\overrightarrow{i} + \overrightarrow{j} - 3\overrightarrow{k}, \overrightarrow{b} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k} \text{ and } \overrightarrow{c} = -\overrightarrow{i} + \overrightarrow{j} - 4\overrightarrow{k}, \&$$

compute $\left| \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \left(\overrightarrow{c} \times \overrightarrow{d} \right) \right|$
Watch Video Solution

5. If
$$\overline{A} = (1, a, a^2), \overline{B} = (1, b, b^2), \overline{C} = (1, c, c^2)$$
 are non-coplanar vectors and $|(a, a^2, 1 + a^3), (b, b^2, 1 + b^3), (c, c^2, 1 + c^3)\}\rangle| = 0$ then abc=

6. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, find the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$.

7. If
$$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k}, \overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}, \overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$$

then find $\left| \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \overrightarrow{c} \right|$ and $\left| \overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c} \right) \right|$.

8. If
$$|\overrightarrow{a}| = 1$$
, $|\overrightarrow{b}| = 1$, $|\overrightarrow{c}| = 2$ and $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = 0$ then find the angle between \overrightarrow{a} and \overrightarrow{c} .

Natch Video Solution

9. Let

$$\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{k}, \overrightarrow{b} = x\overrightarrow{i} + \overrightarrow{j} + (1-x)\overrightarrow{k}$$
 and $\overrightarrow{c} = y\overrightarrow{i} + x\overrightarrow{j} + (1+x)$, prove that the scalar triple product $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ is independent of
both x and y.

10. Let $\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}, \overrightarrow{c} = \overrightarrow{i} + 3\overrightarrow{k}$. If \overrightarrow{a} is a unit vector then find the maximum value of $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$.

Watch Video Solution

11. Let
$$\overrightarrow{\alpha} = \overrightarrow{\iota} - \overrightarrow{\varphi}, \overrightarrow{\beta} = \overrightarrow{\varphi} - \overrightarrow{\kappa}, \overrightarrow{\chi} = \overrightarrow{\kappa} - \overrightarrow{\iota}$$
. Find unit vector \overrightarrow{d}

such that.

View Text Solution

Solved Problems

1. If
$$\overrightarrow{a} = 6\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$$
 and $\overrightarrow{b} = 2\overrightarrow{i} - 9\overrightarrow{j} + 6\overrightarrow{k}$ then find $\overrightarrow{a} . \overrightarrow{b}$
and the angle between \overrightarrow{a} and \overrightarrow{b} .

2. If $ar{a}=ar{i}+2ar{j}-3ar{k}$ and $ar{b}=3ar{i}-ar{j}+2ar{k}$, then show that

 $ar{a}+ar{b}~~{
m and}~~ar{a}-ar{b}$ are and perpendicular to each other .

3. IF
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?

Watch Video Solution

4. If
$$\left|\overrightarrow{a}\right| = 11$$
, $\left|\overrightarrow{b}\right| = 23$ and $\left|\overrightarrow{a} - \overrightarrow{b}\right| = 30$, then find the angle between the vectors \overrightarrow{a} , \overrightarrow{b} and also find $\left|\overrightarrow{a} + \overrightarrow{b}\right|$.

Watch Video Solution

5. If $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}$, then find the projection vector of \overrightarrow{b} on \overrightarrow{a} and its magnitude.

6. If P, Q, R and S are points whose position vectors are $\overline{i} - \overline{k}, -\overline{i} + 2\overline{j}, 2\overline{j} - 3\overline{k}$ and $3\overline{i} - 2\overline{j} - \overline{k}$ respectively, then find the component of \overline{RS} on \overline{PQ} .

Watch Video Solution

7. If vectors $\lambdaar{i}-3ar{j}+5ar{k},2\lambdaar{i}-\lambdaar{j}-ar{k}$ are perpendicular to each other

find λ .

Watch Video Solution

8. Let
$$\overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}$$
, $\overrightarrow{b} = 4\overrightarrow{i} + \overrightarrow{j}$ and $\overrightarrow{c} = \overrightarrow{i} - 3\overrightarrow{j} - 7\overrightarrow{k}$.
Find the vector \overrightarrow{r} such that \overrightarrow{r} . $\overrightarrow{a} = 9$, \overrightarrow{r} . $\overrightarrow{b} = 7$ and \overrightarrow{r} . $\overrightarrow{c} = 6$.

9. Show that the vectors $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}-5\hat{k}\,\, ext{and}\,\,3\hat{i}-4\hat{k}$ form the

vertices of a right angled triangle.

10. P.T the smaller angle θ between any two diagonals of a cube is given

by $\cos heta=1/3$

Watch Video Solution

11. Let $\bar{a}, \bar{b}, \bar{c}$ be non-zero mutually orthogonal vectors. If $x\bar{a} + y\bar{b} + z\bar{c} = \bar{0}$, then show that x = y = z = 0.

Watch Video Solution

12. Let \bar{a} , \bar{b} and \bar{c} be mutually orthogonal vectors of equal magnitudes. Prove that the vector $\bar{a} + \bar{b} + \bar{c}$ is equally inclined to each of \bar{a} , \bar{b} and \bar{c} , the angle of inclination being $\cos^{-1} \frac{1}{\sqrt{3}}$ Watch Video Solution

13. The vectors $\overline{AB} = 3\overline{i} - 2\overline{j} + 2\overline{k}$ and $\overline{BC} = -\overline{i} - 2\overline{k}$ represent adjacent sides of a parallelogram ABCD. Find the angle between the diagonals.

(-2,1,3) and perpendicular to the vector $3ar{i}+ar{j}+5ar{k}.$

Watch Video Solution

15. Find the cartesian equation of the plane through the point A(2, -1, -4) and parallel to the plane 4x - 12y - 3z - 7 = 0.

16. Find the angle between the planes 2x - 3y - 6z = 5 and 6x + 2y - 9z = 4.

17. Find unit vector orthogonal to the vector $3\overline{i} + 2\overline{j} + 6\overline{k}$ and coplanar with the vectors $2\overline{i} + \overline{j} + \overline{k}$ and $\overline{i} - \overline{j} + \overline{k}$.

Watch Video Solution

18. If
$$\overrightarrow{a} = 2\overrightarrow{i} - 3\overrightarrow{j} + 5\overrightarrow{k}, \ \overrightarrow{b} = -\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$$
, then find $\overrightarrow{a} \times \overrightarrow{b}$

and unit vector perpendicular to both a and b.

19. If $\bar{a} = 2\bar{i} - 3\bar{j} + 5\bar{k}$, $\bar{b} = -\bar{i} + 4\bar{j} + 2\bar{k}$, then find $(\bar{a} + \bar{b}) \times (\bar{a} - \bar{b})$ and unit vector perpendicular to both $\bar{a} + \bar{b}$ and $\bar{a} - \bar{b}$

Watch Video Solution

20. Find the area of the parallelogram for which the vectors $\overrightarrow{a} = 2\overrightarrow{i} - 3\overrightarrow{j}$ and $\overrightarrow{b} = 3\overrightarrow{i} - \overrightarrow{k}$ are adjacent sides.

Watch Video Solution

21. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ then show that $\overrightarrow{a} - \overrightarrow{d}$ and $\overrightarrow{b} - \overrightarrow{c}$ are parallel vectors.

22. If $ar{a}=ar{i}+2ar{j}+3ar{k},$ $ar{b}=3ar{i}+5ar{j}-ar{k}$ are 2 sides of a triangle, find its

area.

23. Let
$$\overrightarrow{a} = 2\overrightarrow{i} - j + \overrightarrow{k}$$
 and $\overrightarrow{b} = 3i + 4j - \overrightarrow{k}$. If θ is the angle between \overrightarrow{a} and \overrightarrow{b} , then find $\sin \theta$.

24. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be such that
 $\overrightarrow{c} \neq \overrightarrow{0}, \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ then show that
 $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are pairwise perpendicular, $\left|\overrightarrow{b}\right| = 1$ and $\left|\overrightarrow{c}\right| = \left|\overrightarrow{a}\right|$.
Watch Video Solution

25. Let $\overrightarrow{a} = 2\hat{i} + \hat{j} - 2\hat{k}$, $\overrightarrow{b} = \hat{i} + \hat{j}$. If \overrightarrow{c} is a vector such that $\overrightarrow{a} \cdot \overrightarrow{c} = \overrightarrow{c} - \overrightarrow{a} = 2\sqrt{2}$ and the angle between $\left| \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \overrightarrow{c} \right|$ equals:

Watch Video Solution

26. Let \bar{a}, \bar{b} be two non-collinear unit vectors, if $\bar{\alpha} = \bar{a} - (\bar{a}, \bar{b})\bar{b}$ and $\bar{\beta} = \bar{a} \times \bar{b}$, then show that $|\bar{\beta}| = |\bar{\alpha}|$.

Watch Video Solution

27. A non-zero vector \bar{a} , is parallel to the line of intersection of the plane determined by the vectors \bar{i} , $\bar{i} + \bar{j}$ and the plane determined by the vectors $\bar{i} - \bar{j}$, $\bar{i} + \bar{k}$ Find the angle between \bar{a} and the vector $\bar{i} - 2\bar{j} + 2\bar{k}$

$$\overrightarrow{a} = 4\overrightarrow{i} + 5\overrightarrow{j} - \overrightarrow{k}, \ \overrightarrow{b} = \overrightarrow{i} - 4\overrightarrow{j} + 5\overrightarrow{k} \ \text{and} \ \overrightarrow{c} = 3\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k},$$

the find vector $\overrightarrow{\alpha}$ which is perpendicular to both \overrightarrow{a} , \overrightarrow{b} and $\overrightarrow{\alpha}$. $\overrightarrow{c} = 21$

Watch Video Solution

29. For any vector $ar{a}$ show that $ig|ar{a} imesar{i}ig|^2+ig|ar{a} imesar{j}ig|^2+ig|ar{a} imesar{k}ig|^2=2ig|ar{a}ig|^2$

Watch Video Solution

30. If \overrightarrow{a} is non-zero vector and b, \overrightarrow{c} are two vector such that $\overrightarrow{a} \times b = a \times \overrightarrow{c}$ and $\overrightarrow{a} \cdot b = a$. \overrightarrow{c} , then prove that $\overrightarrow{b} = \overrightarrow{c}$.

32. Find the volume of the parallelopiped having co-tenninus edges are represented by the vectors $2\overline{i} - 3\overline{j} + \overline{k}$, $\overline{i} - \overline{j} + 2\overline{k}$, $2\overline{i} + \overline{j} - \overline{k}$.

Watch Video Solution

are coplanar, then find p.

Watch Video Solution

34. Show that
$$\overrightarrow{i} \times \left(\overrightarrow{a} \times \overrightarrow{i}\right) + \overrightarrow{j} \times \left(\overrightarrow{a} \times \overrightarrow{j}\right) + k \times \left(\overrightarrow{a} \times \overrightarrow{k}\right) = 2\overrightarrow{a}$$
 for any

vector a.

38. Find the equation of the plane passing through the point A=(2,3,-1),B=

(4,5,2),C=(3,6,5).

39. Find the equation of the plane passing through the point A = (3, -2, -1) and parallel to the vector $\overrightarrow{b} = \overrightarrow{i} - 2\overrightarrow{j} + 4\overrightarrow{k}$ and $\overrightarrow{c} = 3\overrightarrow{i} + 2\overrightarrow{j} - 5\overrightarrow{k}$.

Watch Video Solution

40. Find the vector equation of the plane passing through the intersection of the planes \bar{r} . $(\bar{i} + \bar{j} + \bar{k}) = 6$ and \bar{r} . $(2\bar{i} + 3\bar{j} + \bar{k}) = -5$ and the point (1, 1, 1)

41. Find the distance of a point (2,5,-3) from the planer r.(6i-3j+2k)=4

$$ar{r} = ig(6ar{i} + 2ar{j} + 2ar{k} ig) + tig(ar{i} - 2ar{j} + 2ar{k} ig) \,\, ext{and}\,\,ar{r} = ig(- 4ar{i} - ar{k} ig) + sig(3ar{i} - 2ar{j} - ar{j} ar{k} ig) \,\, ext{and}\,\,ar{r} = ig(- 4ar{i} - ar{k} ig) + sig(3ar{i} - 2ar{j} ar{j} ar{k} ig) \,\, ext{and}\,\,ar{r} = ig(- 4ar{i} - ar{k} ig) + sig(3ar{i} - 2ar{j} ar{k} ig) \,\, ext{and}\,\,ar{r} = ig(- 4ar{i} - ar{k} ig) + sig(3ar{i} - 2ar{j} ar{k} ig) \,\, ext{and}\,\,ar{r} = ig(- 4ar{i} ar{k} ig) + sig(3ar{k} ar{k} ig) \,\, ext{and}\,\,ar{k} ig) \,\, ext{and}\,\,ar{r} = ig(- 4ar{k} ar{k} ig) \,\, ext{and}\,\,ar{k} ig) \,\, ext{and}\,\,ar{k} \,\,ar{k} \,\, ext{and}\,\,ar{k} \,\,ar{k} \,\, ext{and}\,\,ar{k} \,\,ar{k} \,\, ext{and}\,\,ar{k} \,\,ar{k} \,\,ar{k}$$

45. Prove that angle in a semi circle is a rightangle by using Vector method.

46. Show that the vector area of the quadrilateral ABCD having diagonals

$$\overrightarrow{AC}, \overrightarrow{BD}$$
 is $\frac{1}{2} \left(\overrightarrow{AC} \times \overrightarrow{BD} \right)$.