

MATHS

BOOKS - VIKRAM PUBLICATION (ANDHRA PUBLICATION)

PROPERTIES OF TRIANGLES

Solved Problems

1. In $\triangle ABC$, if a = 3, b = 4 and $\sin A = \frac{3}{4}$, find angle *B*.

2. If the lengths of the sides of a triangle are 3 , 4,5 find the circumradius of the triangle .

6. In
$$\Delta ABC, ext{ if } (a+b+c)(b+c-a) = 3bc, ext{ then A=}$$

7. If a = 4, b = 5, c = 7, find
$$\cos \frac{B}{2}$$

8. Find b
$$\cos^2 rac{C}{2} + c \cos^2 rac{B}{2}$$

Watch Video Solution

9. If tan.
$$\frac{A}{2} = \frac{5}{6}$$
 and tan. $\frac{C}{2} = \frac{2}{5}$ then determine the relation

between a, b,c

10. If
$$\cot. \frac{A}{2} = \frac{b+c}{a}$$
 find angle B

11. If
$$an. \ {C-A\over 2} = k \cot. \ {B\over 2}$$
 then find k .

12. In
$$\Delta ABC$$
 show that $\displaystyle rac{b^2-c^2}{a^2} = \displaystyle rac{\sin(B-C)}{\sin(B+C)}$

13.
$$a^2 \cot A + b^2 \cot B + c^2 \cot C \frac{abc}{R}$$

14. In
$$\Delta ABC$$
 prove that
 $(b-c)^2 \cos^2 \cdot \frac{A}{2} + (b+c)^2 \sin^2 \cdot \frac{A}{2} = a^2$
Watch Video Solution
15. Prove that $a(b \cos C - c \cos B) = b^2 - c^2$
Watch Video Solution
16. Show that $\frac{c-b \cos A}{b-c \cos A} = \frac{\cos B}{\cos C}$
Watch Video Solution
17. In ΔABC , $if \frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$ then show that
 $C = 60^\circ$

18. If
$$a = (b-c) \sec \theta$$
, then prove that $\tan \theta = \frac{2\sqrt{bc}}{b-c} \frac{\sin A}{2}$.

19. In
$$\triangle ABC$$
 show that $(a+b+c)\left(\tan.\frac{A}{2}+\tan.\frac{B}{2}\right)=2\cot.\frac{C}{2}$
Vatch Video Solution

20. $b^2 \sin 2C + C^2 \sin 2B = 2b \sin A$

21. Prove that $\cot A + \cot B + \cot C = rac{a^2+b^2+c^2}{4igtrianglelember a}.$

Watch Video Solution

22. Show that
$$a\cos^2rac{A}{2}+b\cos^2rac{B}{2}+c\cos^2rac{C}{2}=s+rac{\Delta}{R}$$
 .

Watch Video Solution

23. In a $\triangle ABC$ if $a \cos A = b \cos B$ the prove that triangle is

either isosceles or right angled .

24. If
$$\frac{\cot A}{2}: \cot \frac{B}{2}: \cot \frac{C}{2} = 3:5:7$$
 then show that $a:b:c = 6:5:4.$

Prove

that

 $a^3\cos(B-C)+b^3\cos(C-A)+c^3\cos(A-B)=3abc.$

Watch Video Solution

26. IF p_1, p_2, p_3 are the lengths of the altitudes of a triangle from

the vertices A,B,C then $1/p_2^1 + 1/p_2^2 + 1/p_3^2 =$

Watch Video Solution

27. The angle of elevation of the toop point P of the vertical tower PQ of height h from a point A 45° and from a point B is 60° , where B is a point at a distance 30 meters from the point A

measured along the line AB which makes an angle 30° with AQ .

Then the height of the tower is.

28. Two trees A and B are on the same side of a river. From a point C in the river the distances of the trees A and B are 250 m and 300 m respectively. IF the angle C is 45° , the distance the trees is

Watch Video Solution

29. In
$$\Delta ABC$$
, prove that $rac{1}{r_1}+rac{1}{r_2}+rac{1}{r_3}=rac{1}{r}.$

30. Show that
$$rr_1r_2r_3=\Delta^2$$

32. If the perimeter of a triangle is 12 unit and it in radius is 1 unit,

then its area is

Watch Video Solution

33. Show that
$$rr_1 = (s-b)(s-c)$$

34.
$${a\cos A + b\cos B + c\cos C\over a + b + c} =$$

38. If $rr_2 = r_1r_3$, then find B.

41. If
$$(r_2-r_1)(r_3-r_1)=2r_2r_3$$
. show that $A=90$ $\Big(1-rac{r_1}{r_2}\Big)\Big(1-rac{r_1}{r_3}\Big)=2$, show that $A=90^\circ$

0

42.
$$rac{r_1(r_2+r_3)}{\sqrt{r_1r_2+r_2r_3+r_1r_3}}=$$

43. Show that
$$rac{1}{r^2}+rac{1}{r_1^2}+rac{1}{r_2^2}+rac{1}{r_3^2}=rac{a^2+b^2+c^2}{\Delta^2}$$

Watch Video Solution

44. Prove that
$$\sum {(r+r_1) aniggl(rac{B-C}{2}iggr)}=0$$

Watch Video Solution

45. In
$$riangle ABC$$
 prove that $rac{r_1}{bc}+rac{r_2}{ca}+rac{r_3}{ab}=rac{1}{r}-rac{1}{2R}.$

46. If $\mathsf{r}:\mathsf{R}\;r_1=2\!:\!5\!:\!12$ then $\angle A=$

$$rac{1}{\sqrt{A_1}} + rac{1}{\sqrt{A_2}} + rac{1}{\sqrt{A_3}} = rac{1}{\sqrt{A}}$$

$$(r_1+r_2)\mathrm{sec}^2rac{C}{2}=(r_2+r_3)\mathrm{sec}^2rac{A}{2}(r_3+r_1)\mathrm{sec}^2rac{B}{2}.$$

49.

50. In ΔABC , if AD , BE , CF are the perpendiculars drawn from the vertices A, B, C to the opposite sides, shot that

$$\frac{1}{AD} + \frac{1}{BE} + \frac{1}{CF} = \frac{1}{r} \text{ and } (ii)AD. BE. CF = \frac{(abc)^2}{8R^3} = \frac{8\Delta^3}{abc}$$

 Watch Video Solution

51. In ΔABC , if AD , BE , CF are the perpendiculars drawn from

the vertices A, B, C to the opposite sides, shot that

$$rac{1}{AD}+rac{1}{BE}+rac{1}{CF}=rac{1}{r} ext{ and } (ii)AD. \ BE. \ CF=rac{\left(abc
ight)^2}{8R^3}=rac{8\Delta^3}{abc}$$

52. In a ΔABC if $r_1=8, r_2=12, r_3=24$ find a,b,c.

53. Show that
$$rac{ab-r_1r_2}{r_3} = rac{bc-r_2r_3}{r_1} = rac{ca-r_3r_1}{r_2}$$

Watch Video Solution

Textual Exercises Exercise 10 A I

1. In
$$\Delta ABC, \ \sum a(\sin B - \sin C)$$

Watch Video Solution

2. In $\Delta ABC, ~~ ext{if}~~a=\sqrt{3}+1, B=30^\circ, C=45^\circ$, then c=

5. If the angles are in the ratio 1: 5: 6, then find the ratio of its sides .

6. Show that $2(bc\cos A + ca\cos B + ab\cos C) = a^2 + b^2 + c^2$.

8.
$$(b + c) \cos A + (c + a) \cos B + (a + b) \cos C =$$

Watch Video Solution

9. Prove that $(b - a \cos C) \sin A = a \cos A \sin C$

10. IF 4,5 are two sides of a triangle and the included angle is $60^{\,\circ}$,

then its area is

11. Find b
$$\cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2}$$

Watch Video Solution

12. If
$$\frac{a}{\cos A} = \frac{b}{\cos B} = \frac{c}{\cos C}$$
, then show that ΔABC is

equilateral.

Textual Exercises Exercise 10 A li

1. Prove that $a \cos A + b \cos B + c \cos C = 4R \sin A \sin B \sin C$. Watch Video Solution 2. In Δ , $\sum a^3 \sin(B-C) =$ Watch Video Solution 3. Show that $rac{a\sin(B-C)}{b^2-c^2} - rac{b\sin(C-A)}{c^2-a^2} - rac{c\sin(A-B)}{a^2-b^2}$ Watch Video Solution **4.** Prove that $\frac{a}{bc} + \frac{\cos A}{a} = \frac{b}{ca} + \frac{\cos B}{b} = \frac{c}{ab} + \frac{\cos C}{c}$ Watch Video Solution

5. Prove that
$$rac{1+\cos(A-B)\cos C}{1+\cos(A-C)\cos B}=rac{a^2+b^2}{a^2+c^2}$$

6. If
$$C = 60^{\circ}$$
, then show that $\frac{a}{b+c} + \frac{b}{c+a} = 1$

Watch Video Solution

7. If
$$C=60^{\,\circ}\,$$
 then show that

$$rac{b}{c^2-a^2}+rac{a}{c^2-b^2}=0.$$

8. In $\triangle ABC$ if a:b:c=7:8:9, then $\cos A:\cos B:\cos C=$

13. Show that
$$(b+c) \cos \left(rac{B+C}{2}
ight) = a \cos \left(rac{B-C}{2}
ight)$$

14. In
$$\Delta ABC$$
 show $rac{eta^2-\chi^2}{lpha^2}=\sigma\ln urac{(B-X)}{(B+X)}$

View Text Solution

Textual Exercises Exercise 10 A lii

1. Show that

$$\cot rac{A}{2} + \cot rac{B}{2} + \cot rac{C}{2} = rac{S^2}{\Delta}$$

2. Prove that
$$an. \, rac{A}{2} + an. \, rac{B}{2} + an. \, rac{C}{2} = rac{bc+ca+ab-s^2}{\Delta}$$

3.
$$\frac{\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}}{\cot A + \cot B + \cot C} =$$

Watch Video Solution

4. In
$$\Delta ABC, \, \sum{(a+b) aniggl(rac{A-B}{2}iggr)} =$$

Watch Video Solution

5.
$$b - c/b + c \frac{\cot A}{2} + b + c/b - c \frac{\tan A}{2} = 2 \cos ec(B - C)$$

అని చూపండి.

6. If
$$\sin \theta = rac{a}{b+c}$$
 then show that $\cos \theta = rac{2\sqrt{bc}}{b+c} \cos \left(rac{A}{2}
ight)$

7. If
$$a = (b+c)\cos heta$$
, then prove that $\sin heta = rac{2\sqrt{bc}}{b+c}\cos \left(rac{A}{2}
ight)$

Watch Video Solution

8. In $\Delta ABC, b\cos(C+ heta)+c\cos(B- heta)=$

9. If the angles of triangles ABC are in A.P. and b: c= $\sqrt{3}$: $\sqrt{2}$ then $\angle a =$

10. If
$$rac{a^2+b^2}{a^2-b^2}=rac{\sin C}{\sin(A-B)}$$
 , then S.T . ΔABC is either isoceles

or right angled triangle .

Watch Video Solution

11. In ΔABC , if $\cos A + \cos B + \cos C = 3/2$, then the

triangle is

Watch Video Solution

12. If $\cos^2 A + \cos^2 B = \cos^2 C = 1$ then show that ΔABC is

right angled

13. In a riangle ABC if $a^2 + b^2 + c^2 = 8R^2$ then show that riangle ABC is a right angled triangle.

14. In
$$\triangle ABC$$
, if $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ are in A.P., then a,b,c are in

Watch Video Solution

15. If
$$\sin^2$$
. $rac{A}{2}+\sin^2$. $rac{B}{2}+\sin^2$. $rac{C}{2}$ are in H.P , show that a , b, c

are in H. P

16. $C=90^{0}$ అయితే, $ig(a^{2}+b^{2}/a^{2}-b^{2}ig) {
m sin}(A-B)=1$ అని నిరూపించండి.

18. A lamp post is sittuated at the middle point M of the side AC of a triangular plot ABC with BC=m CA =8 m and AB =9 m. Lamp post subleds an anlgle 15° at the point B. The height of the lamp post is

19. Two ships leave a port at the same time . One goes 24km per hour in the direction $N45^{\circ}$ E and other travels 32km per hour in the direction $S75^{\circ}E$. Find the distance between the ships at the end of 3 hours

Watch Video Solution

20. A tree stands vertically on the slant of the hills From a point A on the ground 35 meters. Down the hill from the base of the tree , the angle of elevation of the top of the tree is 60° . If the angle of elevation of the tree A is 15° , then the height of the tree.

21. The upper $3/4^{th}$ portion of a vertical pole subtends an angle $\tan^{-1}(3/5)$ at a point in the horizontal plane through its foot

and at a distance 40 m from the foot . Given that the vertical pole is at a height less than 100m from the gound ,find its height .

Watch Video Solution

22. AB is vertical pole with B at ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60° . He moves away from the pole along the line BC to a point D such that CD =7 m. From D the angle of elevation of the point A is 45° then the hight of the pole is

Watch Video Solution

23. Let an object be placed at some height h cm and let P and Q two points of observation which are at a distance 10 cm a part on a line inclined at angle 15° to the horizontal. If the angles of

elevation of the object from P and Q are 30° and 60° respectively then find h.

Watch Video Solution

Textual Exercises Exercise 10 B I

1. Express
$$\sum r_1 \cot \frac{A}{2}$$
 interms of s .

Watch Video Solution

2. In ΔABC Prove that

 $a \cot A + b \cot B + c \cot C = 2(R + r)$

3. Prove that

 $r_1 + r_2 + r_3 - r = 4R$

5. If $r_1+r_2=r_3-r$ then show that $\lfloor C=90^\circ$

Textual Exercises Exercise 10 B li

1. Prove that $4(r_1r_2 + r_2r_3 + r_3r_1) = (a + b + c)^2$

Watch Video Solution

2. Prove that
$$\left(rac{1}{r}-rac{1}{r_1}
ight) \left(rac{1}{r}-rac{1}{r_2}
ight) \left(rac{1}{r}-rac{1}{r_3}
ight) = rac{abc}{\Delta^3} = rac{4R}{r^2s^2}$$

Watch Video Solution

3. Show that
$$r(r_1+r_2+r_3)=ab+bc+ca-s^2$$
 .

Watch Video Solution

$$\textbf{4.}~\frac{r_1}{(s-b)(s-c)}+\frac{r_2}{(s-c)(s-a)}+\frac{r_3}{(s-a)(s-b)}=\frac{3}{r}$$

5.
$$(r_1+r_2) anrac{c}{2}=(r_3-r) anrac{c}{2}=c$$

6.
$$r_1 r_2 r_3 = r^3 \cot^2 rac{A}{2} \cot^2 rac{B}{2} \cot^2 rac{C}{2}$$

Textual Exercises Exercise 10 B lii

1. In ΔABC Prove that

$$\cos A + \cos B + \cos C = 1 + \frac{r}{R}$$

$$\Delta ABC \quad ext{prove that} \quad \cos^2 \cdot rac{A}{2} + \cos^2 \cdot rac{B}{2} + \cos^2 \cdot rac{C}{2} = 2 + rac{r}{2R}$$

In

3. In
$$\Delta ABC$$
 Prove that

2.

D

$$\sin^2 rac{A}{2} + \sin^2 rac{B}{2} + \sin^2 rac{C}{2} = 1 - rac{r}{2R}$$

Watch Video Solution

4.
$$(r_2+r_3)\sqrt{rac{rr_1}{r_2r_3}}=a$$

5. In
$$\Delta ABC, r_1 r_2 \sqrt{\left[\frac{4R - r_1 - r_2}{r_1 + r_2}\right]}$$
=

6. In
$$\Delta ABC, r_1^2 + r_2^2 + r_3^2 + r^2 =$$

7. If p_1, p_2, p_3 are the lengths of the altitudes from the vertices

A,B,C of ΔABC to the opposite sides respectively then prove that

$$rac{1}{p_1}+rac{1}{p_2}+rac{1}{p_3}=rac{1}{r}$$

Watch Video Solution

8. If p_1, p_2, p_3 are the lengths of the altitudes from the vertices

A,B,C of ΔABC to the opposite sides respectively then prove that

$$rac{1}{p_1}+rac{1}{p_2}-rac{1}{p_3}=rac{1}{r_3}$$

Match Video Colution

9. If p_1, p_2, p_3 are the lengths of the altitudes from the vertices

A,B,C of ΔABC to the opposite sides respectively then prove that

$$p_1 p_2 p_3 = rac{\left(a b c
ight)^2}{8 R^3} = rac{8 \Delta^3}{a b c}$$

Watch Video Solution

10. In a
$$riangle ABC$$
 if $a=13, b=14, c=15$ then S.T $R=rac{65}{8}, r=4, r_1=rac{21}{2}, r_2=12, r_3=14.$

Watch Video Solution

11. If $r_1 = 2, r_2 = 3, r_3 = 6$ and r = 1, prove that a=3,b=4 and

c=5.

