©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - VIKRAM PUBLICATION (

 ANDHRA PUBLICATION)

 ANDHRA PUBLICATION)}

THE PLANE

Problems

1. Find the equation of the plane if the foor of
the perpendicular from origin to the plane is
$(2,3,-5)$.

D Watch Video Solution
2. Find the equation to the plane through the points $(0,-1,-1),(4,5,1)$ and (3, 9, 4).

D Watch Video Solution

3. Find the equation to the plane parallel to the

ZX-plane and passing through (0,4,4).
4. Find the equation of the plane through the point (α, β, γ) and parallel to the plane $a x+b y+c z=0$

D Watch Video Solution

5. Find the angle between the planes $2 x-y+z=$ 6 and $x+y+2 z=7$.
6. Find the equation of the plane passing through ($2,0,1$) and ($3,-3,4$) and perpendicular to $x-2 y+z=6$.

D Watch Video Solution

7. Reduce the equation of the plane $x+2 y-2 z-9$
$=0$ to the normal form and hence find the
direction cosines of the normal to the plane and
the length of the perpendicular drawn from the origin to the given plane.
8. Suppose a plane makes intercepts $2,3,4$ on the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - axes respectively. Then find its equation.

D Watch Video Solution

9. Consider the plane whose equation is , $x-3 y$
$4-2 z=9$.

- View Text Solution

Textual Exercises Exercise 7 A I

1. Find the equation of the plane If the foot of
the perpendicular from origin of the plane is

A(1,3,-5)

D Watch Video Solution

2. Reduce the equation $x+2 y-3 z-6=0$ of the plane to the normal form.

D Watch Video Solution

3. Find the equation of the plane whose intercepts on x, y, z axes are 1, 2, 4 respectively.

- Watch Video Solution

4. Find the intercepts of the plane
$4 x+3 y-2 z+2=0$ on the coordinate axes.

(D) Watch Video Solution

5. The d.c.'s of the normal to the plane $2 x+3 y-$ $6 z+5=0$ are

- Watch Video Solution

6. Find the equation of the plane passing through the point $(-2,1,3)$ and having ${ }^{`}(3,-5$,
4) as d.r's of its normal.

D Watch Video Solution

7. Write the equation of the plane
$4 x-4 y+2 z+5=0$ in the intercept form.
8. Find the angle between the planes

$$
x+2 y+2 z-5=0 \text { and } 3 x+3 y+2 z-8=0
$$

D Watch Video Solution

Textual Exercises Exercise 7 A li

1. Find the equation of the plane passing through the point (1,1,1) and parallel to the plane $x+2 y+3 z-7=0$
2. Find the equation of the plane passing through $(2,3,4)$ and perpendicular to x -axis.

D Watch Video Solution

3. Show that $2 x+3 y+7=0$ represents a plane perpendicular to $x y$-plane.
4. Find the angle between the planes $2 x-y+z=$ 6 and $x+y+2 z=7$.

D Watch Video Solution

5. Find the equation of the plane through ($-1,6,2$) are perpendicular to the join of $(1,2,3)$ and $(-2,3,4)$.

D Watch Video Solution

6. Find the equation of the plane bisecting the
line segment joining ($2,0,6$) and ($-6,2,4$) and perpendicular to it.

D Watch Video Solution

7. Find the equation of the plane passing through $(0,0,-4)$ and perpendicular to the line joining the points $(1,-2,2)$ and $(-3,1,-2)$.
8. The equation of the plane through $(4,4,0)$ and perpendicular to the planes
$2 x+y+2 z+3=0$ and $3 x+3 y+2 z-8=0$

D Watch Video Solution

Textual Exercises Exercise 7 A lif

1. Find the equation of the plane through the points $(2,2,-1),(3,4,2),(7,0,6)$.
2. Show that the points
$(0,-1,0),(2,1,-1),(1,1,1),(3,3,0)$ are coplanar.

D Watch Video Solution

3. Find the equation of the planes through
$(6,-4,3),(0,4,-3)$ and cutting of intercepts whose sum is zero.

D Watch Video Solution

4. A plane meets the coordinate axes A, B, C so that the centroid of the triangle ABC is $(1,2,4)$.

Then the equation of the plane is

D Watch Video Solution

5. Show that the plane through $(1,1,1),(1,-1,1)$ and
$(-7,-3,-5)$ is parallel to the Y-axis.

D Watch Video Solution

6. Show that the equations
$a x+b y+r=0 b y+c z+p=0, c z+a x+q=0$
represents the planes perpendicular to $\mathrm{xy}, \mathrm{yz}, \mathrm{zx}$

- planes respectively.

- Watch Video Solution

Important Points

1. The position vectors of the three non-collinear points A, B, C, are $\bar{a}, \bar{b}, \bar{c}$ respectively. The
distance of the origin from the plane through A, B, C is

D Watch Video Solution

2. Consider a variable line L which passes
through the point of intersection P of the line $3 x+4 y-12=0$ and $x+2 y-5=0$ meetingt the coordinate axes at point A and B. Locus of the feet of the perpendicular from the origin on the variable line L has the equation
3. Equation of the plane π which contains the point $\mathrm{A}\left(x_{0}, y_{0}, z_{0}\right)$ and perpendicular to the line

L with direction ratios $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is a $\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$.

D Watch Video Solution

4. The perpendicular distance of the plance ax + $\mathrm{b} \mathrm{y}+\mathrm{cz}+\mathrm{d}=0$ from the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is $\frac{a x_{0}+b y_{0}+c z_{0}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}$

