©゙’doubtnut

India's Number 1 Education App

MATHS

NCERT - NCERT Maths(KANNADA)

SIMILAR TRIANGLES

Example

1. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ and $\frac{A D}{D B}=\frac{3}{5}$.
$A C=5.6$ Find $A E$.

- Watch Video Solution

2. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$ show that $A B C D$ is a trapezium.

D Watch Video Solution

3. In trapezium $A B C D, A B| | D C$. E and F are points on nonparallel sides $A D$ and $B C$ respectively such that $E F \| A B$.

Show that $\frac{A E}{E D}=\frac{B F}{F C}$

D View Text Solution

4. A man sees the top of a tower in a mirror which is at a distance of 87.6 m from the tower. The mirror is on the
ground facing upwards. The man is 0.4 m away from the mirror and his height is 1.5 m . How tall is the tower?

D Watch Video Solution

5. Gopal is worrying that his neighbour can peep into his living room from the top floor of his house. He has decided raise the height of the fence that is high enough to block the view from his neighbour's top floor window.

What should be the height of the fence? The measurements are given in the figure.
6. Prove that if the area of similar triangles are equal, they are congruent.

- Watch Video Solution

7. $\triangle A B C \sim \triangle D E F$ and their areas are respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$., then find $B C$.

- Watch Video Solution

8. Diagonals of a trapezium ABCd with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.
9. A ladder 25 m long reaches a window of building 20 m above the ground. Determine the distance from the foot of the ladder to the building.

D Watch Video Solution

10. $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A. Prove that $4\left(B L^{2}+C M\right)^{2}=5 B C^{2}$.

D Watch Video Solution

11. ' O ' is any point inside a rectangle ABCD. Prove that
$O B^{2}+O D^{2}=O A^{2}+O C^{2}$

D Watch Video Solution

12. The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m ., less than the hypotenuse, find the sides of the triangle

D Watch Video Solution

13. $A B C$ is a right triangle right angled at C. Let $B C=a, C A=$ $b, A B=c$ and let p be the length of perpendicular from C on AB . Prove that (i) $\mathrm{pc}=\mathrm{ab}$ (ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

Do This Fill In The Blanks

1. All squares are

- Watch Video Solution

2. All equilateral triangles are

D Watch Video Solution
3. All isosceles triangles are

D Watch Video Solution

4. Two polygons with same number of sides are
if their corresponding angles are equal and corresponding sides are equal.

- Watch Video Solution

5. Reduced and Enlarged photographs of an object are

- Watch Video Solution

6. Rhombus and squares are to each other.

Do This True False

1. State True / False - Any two similar figures are congruent.

- Watch Video Solution

2. Any two congruent figures are similar.

- Watch Video Solution

3. State True / False - Two polygons are similar if their corresponding angles are equal.
4. Give two different examples of pair of similar figures.

(Watch Video Solution

5. Give two different examples of pair of

Non Similar figures

D Watch Video Solution

Do This

1. In the given fig. if $A D \perp B C$ Prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.

- Watch Video Solution

Exercise 81

1. Using Theorem, prove that a line drawn thought the mid- point of one side of a triangle parallel to another side bisects the third side .(Recall that you have proved it in class IX).
2. Using Theorem, prove that the line joining the midpoint of any two sides of a triangle is parallel to the third side. (Recall that you have done it is class IX).

- Watch Video Solution

3. ABCD is a trapezium in which $A B|\mid D C$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$

- Watch Video Solution

4. Draw a line segment of length 7.2 cm and divide it in the ratio 5:3. Measure the two parts.

- Watch Video Solution

Exercise 82

1. The perimeters of two similar triangles are 30 cm and 20 cm respectively. If one side of the first triangle is 12 cm , determine the corresponding side of the second triangle.

- Watch Video Solution

2. A girl of height 90 cm is walking away from the base of a lamp post at a speed of $1.2 \mathrm{~m} / \mathrm{sec}$. If the lamp post is 3.6 m above the ground, find the length of her shadow after 4 seconds.

- Watch Video Solution

3. Diagonlas $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. using a similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

- Watch Video Solution

4. A flag pole 4 m tall casts a 6 m shadow. At the same time, a nearby building casts a shadow of 24 m . How tall is the building ?

- Watch Video Solution

5. GD and GH are respectively the bisectors of
$\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and

FE of $\triangle A B C$ and and $\triangle E F G$ respectively. If
$\triangle A B C \sim \Delta F E G$, show that:
$\frac{C D}{G H}=\frac{A C}{F G}$
6. $A X$ and $D Y$ are altitudes of two similar triangles $\triangle A B C$ and $\triangle D E F$. Prove that $\mathrm{AX}: \mathrm{DY}=\mathrm{AB}: \mathrm{DE}$.

- Watch Video Solution

7. To construct a triangle similar to a given $\triangle A B C$ with its sides $\frac{8}{5}$ th the corresponding sides of $\triangle A, B, C$ draw a ray BX such that $C B X$ is an acute angle and X is on the opposite side of A with respect to $B C$. The minimum number of points to be located at equal distances on the ray $B X$

D Watch Video Solution

8. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

- Watch Video Solution

9. Construct an isoeceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides $1 \frac{1}{2}$ times the corresponding sides of the isoeceles triangle.

- Watch Video Solution

1. $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are mid points of sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ of $\triangle A B C$. Find the ratio of areas of $\triangle D E F$ and $\triangle A B C$.

- Watch Video Solution

2. In $\Delta A B C, \mathrm{XY} \| \mathrm{AC}$ and XY divides the triangle into two parts of equal area. Find the ratio of $\frac{A X}{X B}$.

- Watch Video Solution

3. Prove that the ratio of the areas of two similar triangles
is equal to the square of the ratio of their corresponding medians.
4. If $\triangle A B C \sim \triangle D E F, B C=3 \mathrm{~cm}, E F=4 \mathrm{~cm}$, and Area of $\triangle A B C=54 \mathrm{~cm}^{2}$, then Area of $\triangle D E F$ is

- Watch Video Solution

5. $A B C$ is a triangle and $P Q$ is a straight line meeting $A B$ in P and $A C$ in Q. If $A P=1 \mathrm{~cm}, B P=3 \mathrm{~cm}, A Q=1.5 \mathrm{~cm}$ and $C Q=$ 4.5 cm , prove that area of $\triangle A P Q=\frac{1}{16}$ (area of $\triangle A B C$).

- Watch Video Solution

6. The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is 4.5 cm . Find the corresponding altitude of the smaller triangle.

- Watch Video Solution

Exercise 84

1. Prove that sum of the squares of the side of a rhombus is equal to the to the sum of the squares of its diagonals.
2. In an equilateral triangle, prove that three times the square pf one side is equal to four times the square of one of its altitudes.

- Watch Video Solution

3. $P Q R$ is a triangle right angled at P and M is a point on QR such that $\mathrm{PM} \perp \mathrm{QR}$. Show that $P M^{2}=Q M . M R$.

- Watch Video Solution

4. $A B C$ is an isosceles triangle right angled at C. Prove that

$$
A B^{2}=2 A C^{2}
$$

5. A guy wire attached to a vertical pole of height 18 m is

24 m long and has a stake attached to the other end. How
far from the base of the pole should the stake be driven so that the wire will be taut?

D Watch Video Solution

6. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is

12 m find the distance between their tops.

D Watch Video Solution

7. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $\mathrm{BD}=\frac{1}{3} \mathrm{BC}$. Prove that $9 A D^{2}=7 A B^{2}$.

- Watch Video Solution

8. The equilateral triangles are drawn on the sides of a right triangle. Show that the area of the triangle on the hypotenuse is equal to the sum of the areas of the triangles on the other two sides.

OR

In the given figure, PA, QB and RC are each perpendicular
to AC. Prove that $\frac{1}{x}+\frac{1}{z}=\frac{1}{y}$

- Watch Video Solution

9. Prove that ara of the equilateral triangle described on the sides of square is half the area of the equilateral triangle described on its diagonal.

D Watch Video Solution

Optional Exercise

1. The diagonal $A C$ of a parallelogram $A B C D$ intersects $D P$
at the point Q, where ' P ' is any point on side $A B$. Prove that
$C Q \times P Q=Q A \times Q D$.

D Watch Video Solution

2. An aeroplane leaves an airport and flies due north at a speed of 1000 kmph . At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 kmph. How far apart will the two planes be after $1 \frac{1}{2}$ hour?

D Watch Video Solution

Try This

1. E and F are points on the sides $P Q$ and $P R$ respectively of
Δ PQR. For each of the following cases, state whether EF ||

QR:
(i) $P E=3.9 \mathrm{~cm}, E Q=3 \mathrm{~cm}, P F=3.6 \mathrm{~cm}, F R=2.4 \mathrm{~cm}$
(ii) $P E=4 \mathrm{~cm}, Q E=4.5 \mathrm{~cm}, P F=8 \mathrm{~cm}, R F=9 \mathrm{~cm}$
(iii)
$P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, P E=0.18 \mathrm{~cm}, P F=0.36 \mathrm{~cm}$

- Watch Video Solution

2. E and F are points on the sides PQ and PR respectively of
Δ PQR. For each of the following cases, state whether EF \|
QR:
(i) $P E=3.9 \mathrm{~cm}, E Q=3 \mathrm{~cm}, P F=3.6 \mathrm{~cm}, F R=2.4 \mathrm{~cm}$
(ii) $P E=4 \mathrm{~cm}, Q E=4.5 \mathrm{~cm}, P F=8 \mathrm{~cm}, R F=9 \mathrm{~cm}$
(iii)
$P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}, P E=0.18 \mathrm{~cm}, P F=0.36 \mathrm{~cm}$
3. In triangle $\triangle P Q R$, E and F are points on the sides PQ and PR respectively. State whether EF \|QR or not?
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}$ PR $=2.56 \mathrm{~cm} \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$

- Watch Video Solution

