# © 'doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

## Integrated Tests

## Exercise

1. Fill in the blanks in each of the following so that the resulting statement becomes true. The number of terms in the expansion of $(3 a+2 b+c)^{12}$ is $\qquad$
(D) Watch Video Solution
2. Fill in the blanks in each of the following so that the resulting statement becomes true. The value of $\int \frac{d x}{\sqrt{1-\sqrt{x}}}$
$\qquad$

## - Watch Video Solution

3. Fill in the blanks in each of the following so that the resulting statement becomes true. Let $\vec{r}=l(\vec{b} \times \vec{c})+m(\vec{c} \times \vec{a})+n(\vec{a} \times \vec{b}) \quad$ and
$[\vec{a} \vec{b} \vec{c}]=3$. Then $l+m+n=\ldots$ in terms of $\vec{r}, \vec{a}, \vec{b}$ and $\vec{c}$.

## - Watch Video Solution

4. If a normal to a parabola $y^{2}=4 a x$ makes an angle $\phi$ with its axis, then it will cut the curve again at an angle
A. $\frac{\psi}{2}$
B. $\tan ^{-1}(2 \tan \psi)$
C. $\tan ^{-1}\left(\frac{1}{2} \tan \psi\right)$
D. none of these

## Answer:

## - Watch Video Solution

5. Let $C$ be any circle with centre $(0, \sqrt{2})$. Prove that at most two rational points can be there on C .
( A rational point is a point both of whose coordinates are rational numbers.)

## - Watch Video Solution

6. A discontinuous function $y=f(x)$ satisfying $x^{2}+y^{2}=4$ is given by $f(x)=\ldots$.

## - Watch Video Solution

7. An ellipse has $O B$ as a semi-minor axis, $F$ and $\mathrm{F}^{\prime}$ are its two foci and the angle FBF' is a right angle. Find the eccentricity of the ellipse.
8. A die is thrown three times and the sum of the 3 numbers
shown is 15 . The probability that the first throw was a four, is

## D Watch Video Solution

9. Fill in the blanks ine ach of the following so that that resulting sentence becomes true. If
$\sin \theta=\frac{2}{3}, \frac{5 \pi}{2}<\theta<3 \pi$ then $\sin \left(\frac{\theta}{2}\right)=$ $\qquad$ .

## - Watch Video Solution

10. The equation $x e^{x}=2$ has
A. one
B. two
C. zero
D. indifinite

## Answer:

## - Watch Video Solution

11. A function $f(x)=x\left[1+\left(\frac{1}{3}\right) \sin \left(\operatorname{In} x^{2}\right)\right], x \neq 0$. integral part $f(0)=0$. Then the function
A. continous and monotonic increasing everywhere
B. continous and differentiable everywhere
C. nondifferentiable and monotonic everywhere
D. differentiable and monotonic everywhere

## Answer:

## (D) Watch Video Solution

12. 

Prove
that
$\sum_{k=1}^{n-1}(n-k) \frac{\cos (2 k \pi)}{n}=-\frac{n}{2}$, wheren $\geq 3 i$ san $\in t e \geq r$

## D Watch Video Solution

13. $A B C$ is an isosceles triangle inscribed in a circle of radius $r$ , if $A B=A C$ and $h$ is the altitude from $A$ to $B C$. If the $\triangle A B C$ has perimeter P and $\triangle$ then $\lim _{h \rightarrow 0} 512 r \frac{\Delta}{p^{3}}$ equals
14. Let $z_{1}$ and $z_{2}$ be the root of the equation $z^{2}+p z+q=0$ where the coefficient p and q may be complex numbers. Let A and B represent $z_{1}$ and $z_{2}$ in the complex plane.
$\angle A O B=\alpha \neq 0$ and 0 and $O A=O B$, where $O$ is the origin prove that $p^{2}=4 q \cos ^{2}\left(\frac{\alpha}{2}\right)$

## ( Watch Video Solution

15. Let $f(x)=\left\{\begin{array}{cc}\{1+|\sin x|\}^{a /|\sin x|}, & \frac{\pi}{6}<x<0 \\ \mathrm{~b}, & x=0 \\ e^{\tan 2 x / \tan 3 x}, & 0<x<\frac{\pi}{6}\end{array}\right.$

Determine $a$ and $b$ such that $f(x)$ is continous at $x=0$.
16. Determine the constant c such that the straight line joining the points $(0,3)$ and $(5-2)$ is a tangent to the curve $y=\frac{c}{x+1}$.

## - Watch Video Solution

17. Two vertices of an equilateral triangle are $(-1,0)$ and $(1$,

0 ), and its third vertex lies above the $x$-axis. The equation of its circumcircel is $\qquad$

## - Watch Video Solution

18. If $x^{2}+p x=q$ is an integer for every integral value of x then which is necessarily true? (A) $p \varepsilon I, q \not \mathscr{Z} I$ (B) $p \not \mathscr{Z} I, q \varepsilon I$ (C) $p \varepsilon I, q \varepsilon I$ (D) $p \not Z, q \not \subset I$
A. $p$ is a fraction and $q$ is an integer
B. p and q both must be integers
C. $p$ and $q$ both are fractions
D. none of these

## Answer:

## - Watch Video Solution

19. If $\theta$ is the angle between the unit vectors $\widehat{a}$ and $\hat{b}$ then $\cos \left(\frac{\theta}{2}\right)$ is equal to
A. 0
B. 1
C. -1
D. none of these

## Answer:

## ( Watch Video Solution

20. A bag A contains 2 white and 3 red balls and a bag B
contains 4 white and 5 red and balls. One ball is drawn at random from one of the bags and is found to be red. Find the probability that it was drawn from bag $B$.
A. $\frac{5}{14}$
B. $\frac{5}{16}$
C. $\frac{5}{18}$
D. $\frac{25}{52}$

## Answer:

## ( Watch Video Solution

21. 

$\left(1+x+x^{2}+x^{3}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{3 n} x^{3 n}$
, then the
value of $a_{0}+a_{4}+a_{8}+a_{12}+\ldots$. is

## ( Watch Video Solution

22. If the parabolas $y^{2}=4 a x$ and $y^{2}=4 c(x-b)$ have a common normal other than the x -axis $(a, b, c$ being distinct positive real numbers), then prove that $\frac{b}{a-c}>2$.
23. A curve $y=f(x)$ passes through the point $P(1,1)$. The normal to the curve at $P$ is $a(y-1)+(x-1)=0$. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point. Determine the equation of the curve. Also obtain the area bounded by the $y$-axis, the curve and the normal to the curve at $P$.
