

MATHS

BOOKS - UNITED BOOK HOUSE

ANNUAL EXAMINATION QUESTION PAPERS 2017

Exercise

1. If $B\subseteq A$,then the set B -A will be ____

A. a)B

B.b)A

 $C. c)\varphi$

D. d)A'

Answer:

Watch Video Solution

2. If ω be the imaginary cube root of 1 ,then the value of $\left(3+\omega+3\omega^2\right)^4$ will be ___

A. a)16

B. b) 16ω

C. c) $16\omega^2$

D. d)none of these

Answer:

Watch Video Solution

3. If the differnce between the roots of the quadratic equation $x^2+px+8=0$ be 2,thn the value of p will be __

A. a) ± 2

- B. b) ± 4
- C. c) ± 6
- D. d) ± 8

Answer:

- **4.** If $16C_r = 16C_(2r+1)$ then the vaue of r is
 - A. a)6
 - B. b)5

C. c)4

D. d)3

Answer:

Watch Video Solution

5. Find the coordinates of the focus , axis, the question of the directrix and latus rectum of the parabola $y^2=8x$.

A. a)y=0

B.b)x=1

C. c)
$$x=-1$$

Answer:

Watch Video Solution

6. The co-ordinattes of B and C of the trianglle ABC are (5,2,8) and (2,-3,4) respectively. If the centroid of the triangle ABC are (3,-1,3) then the coordinates of A are ___

A. a)(2,-2,2)

$$C. c)(2,-2,-3,)$$

Answer:

Watch Video Solution

7. The value of $Lt_{x ightarrow 0} rac{e^x - e^{-x}}{x}$ is ____

A. a)0

B. b)2

C. c)1

D. d)3

Answer:

Watch Video Solution

8. if $y = \cos^2\left(\frac{x}{2}\right)$ the value of dy/dx is ___

A. a)cosx

B. b)1/2cosx

C. c)-1/2sinx

D. d)-sinx

Answer:

Watch Video Solution

9. If $P(A\cap B)=rac{5}{13}$,then the value of

$$P(A^c \cup B^c)$$
is___

A. a)4/13

B. b) 6/13

C. c)8/13

D. d)12/13

Answer:

Watch Video Solution

10. If the variance of a distribution is 4 coefficient of variation is 5%,then mean of the distribution is ___

A. a)20

B. b)40

C. c)60

D. d)80

Answer:

Watch Video Solution

11. A relation R is defined from A={1,2,3,4,5} to B=

{1,2,3}in such a way that, $(x,y) \in R \Rightarrow x > y$

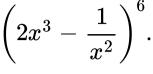
.Express R a set of ordered pairs.

12. If (x+y)
$$\propto$$
 (x-y) , then show that $(x^3+y^3) \propto (x^3-y^3).$

13. Show that
$$\dfrac{1}{\sin 10^\circ} - \dfrac{\sqrt{3}}{\cos 10^\circ} = 4$$

 \wedge ABC

14. Find the value of
$$2ac\sin\Bigl(\dfrac{A-B+C}{2}\Bigr)$$
 for


15. If z be a complex number and $|z+5| \leq 6$,then find the maximum and minimum values on |z+2|.

16. If $^{\text{nP}}_{\text{r}}$ =504 and $^{\hat{}}$ $nC_r=84$,then find value of n and r.

17. Find the coefficinet of $\frac{1}{x^2}$ in the expansion of

18. If P-th term of an arithmetic progression be Q and Q-th term be P.then show that (P+Q)thterm is O.

19. If the perimeter of the triangle formed by the straight line 4x+3y+k=0 with the coordinate axes be 24 unit, then the value of k.

Watch Video Solution

20. Find the co-ordinates of the point lies on the plane YOZ which is equidistant from the points A(1,-1,0),B(2,1,2) and C(3,2,-1).

21. Evaluate : $\lim_{x \to 0} \frac{\cos 5x - \cos 7x}{\cos x - \cos 5x}$

22. If (x+4)y=x.then show that $x \frac{dy}{dx+y}(y-1)=0$.

23. If a coin is tossed 3 times in succession, then find the probability of obtaining tail at least once.

24. The standard deviation of 32 numbers is 5.If the sum of the numbers is 80,determine the sum of the squares of the numbers.

Watch Video Solution

25. For any three sets A,B and C ,prove that

$$A-(B\cup C)=(A-B)\cap (A-C).$$

26. If
$$\frac{\sin^4\alpha}{a}+\frac{\cos^4\alpha}{b}=\frac{1}{a+b}$$
, then show that $\frac{\sin^8\alpha}{a^3}+\frac{\cos^8\alpha}{b^3}=\frac{1}{\left(a+b\right)^3}$.

27. If for a triangle ABC , cot A+cotB+cotC= $\sqrt{3}$, then show that the triangle is equilateral.

28. If n in N,then prove by mathematical induction that 7^(2n)+2^3(n-1).3^(n-1) is always a multipe of 25.

Watch Video Solution

29. If z=x+iy and $\frac{z-i}{z+1}$ is purely imaginary,then show that the point z always lies on a circle.

30. How many odd numbers of fve digits can be formed with the digits 3,6,7,2,0 when no digits is repeated?

Watch Video Solution

31. Prove that the middle term in the expansion of $(1+x)^{2n}$ is $\frac{1.3.5......(2n-1)}{1}.2^n.x^n$

32. If the ratio the sum of 1st n terms of two arithemtic series is (4n-13):(3n+10),then find the ration of their ninth terms.

Watch Video Solution

33. Find the equations of the lines passing thorugh the point (4,5) making equal angles with the lines 3x=4y+7 and 5y=12x+6.

34. If the equation of the side BC of an equilateral triangle ABC is x+y=2 and the coordinate of the vertex A is (2,3) then find the equation of the other two sides.

35. A circle in the first quadrant touches both the axes its centre lies on the straight line lx+my+n=0.show that the equation of that circle is

 $(1+m)^2ig(x^2+y^2ig)+2n(l+m)(x+y)+n^2=0$

watch video Solution

36. Evaluate:
$$\lim_{x \to 0} \frac{(e^x - 1)\log(1 + x)}{\sin^2 x}$$

Watch Video Solution

37. Find from the first principle, the derivative of

$$f(x)=sec2xat x=\frac{\pi}{8}.$$

38. Prove by method of contradiction that $\sqrt{5}$ is an irrational number

Watch Video Solution

39. Prove that truth table \sim (pvq)= \sim p \sim q.

Watch Video Solution

40. If 30 dates are named at random, find the probability that 5 of them will be sundays.

41. calculate the mean deviation about median for the following data:

Marks :	7	.0-10	10-20	20-30	30-40	40-50	50-60	60-70
No. of st	udents	6	5	8	15	7	6	3 .

42. Solve: $4 \sin x \sin 2x \sin 4x = \sin 3x$.



that
$$\cos \varphi = \frac{\cos \theta - e}{I - e \cos \theta}$$
 Watch Video Solution

43. if $an\!\left(rac{ heta}{2}
ight) = \sqrt{rac{1-e}{1+e}} an\!\left(rac{arphi}{2}
ight)$, then prove

44. Solve the following inequation

formula:

45. Solve applying
$$3x^2-(2-i)x+10-4i=0$$

46. Out of 14 marbles 10 are red in colour and remaining 4 are of different colours. How many ways can you select 10 marbles out of these 14 marbles?

47. Find the sum to n terms
$$\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + ... + \frac{2n-1}{2^n}$$

Watch video Solution

48. Prove that the locus of the mid-points of chords of length 2d units of the hyperbola $xy = c^2$ is $(x^2 + y^2)(xy - c^2) = d^2xy$

Watch Video Solution

49. The co-ordinates of end points of a focal chord of an ellipse are (x_1,y_1) and (x_2,y_2) .Prove that $y_1y_2+4x_1x_2=0$

50. The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the point of intersection of the lines 7x+13y=87and 5x-8y+7=0and the length of its latus rectum is $\frac{32\sqrt{2}}{5}$ units. Find the values of a and b.

