

MATHS

BOOKS - UNITED BOOK HOUSE

JODHPUR PARK BOYS'S SCHOOL

EXERCISE

1. If
$$A=ig\{x\in C\!:\!x^2=1ig\}$$
and $B=ig\{x\in C\!:\!x^4=1ig\}$,then $A\cup B$ is :

A. a){-1,i}

B. b){-1,1}

 $\mathsf{C.c})\{\,\pm\,1,\,\,\pm\,1i\}$

D. d) ϕ

2. Prove that
$$\frac{1}{2\sin 10^{\circ}} - 2\sin 70^{\circ} = 1.$$

A. a)0
B. b)1
C. c)2
D. d)4

3. IF cosA+cosB=m and sinA+sinB=n,where m, $n \neq 0$ then sin(A+B)is equal to ___

A. a)
$$\displaystyle \frac{mn}{m^2+n^2}$$

B. b) $\displaystyle \frac{2mn}{m^2+n^2}$
C. c) $\displaystyle \frac{m^2+n^2}{2mn}$
D. d) $\displaystyle \frac{mn}{m+n}$

4. If 1,log $_9ig(3^{1-x}+2ig)$ and $\log_3(4.3^x-1)$ are in A.P.,then x is equal to

A. a) $\log_4 3$

 $\mathsf{B}.\,\mathsf{b}){\log_34}$

C. c) $1 - \log_3 4$

D. d) $\log_3 0.25$

5. $(666...n imes)^2$ +(888..n times) is equal to ___

A. a)
$$rac{4}{9}(10^n-1)$$

B. b) $rac{4}{9}(10^{2n}-1)$
C. c) $rac{4}{9}(10^n-1)^2$

D. d)none of these

6. If ω is an imaginary cube root of unit, then the value of the

expression

$$\begin{pmatrix} 1+\frac{1}{\omega} \end{pmatrix} \left(1+\frac{1}{\omega^2}\right) + \left(2+\frac{1}{\omega} \right) \left(2+\frac{1}{\omega^2}\right) + \left(3+\frac{1}{\omega} \right) \left(3+\frac{1}{\omega^2}\right) \\ + \dots + \left(n+\frac{1}{\omega} \right) \left(n+\frac{1}{\omega^2} \right)$$

A. a)
$$rac{n(n^2+2)}{3}$$

B. b) $rac{n(n^2-2)}{3}$
C. c) $rac{n(n^2+1)}{3}$

D. d)none of these

A. a)
$$\left(-\infty, rac{1}{3}
ight)$$

B. b)(1/3,5)

C. c)
$$(5,\infty)$$

D. d) $\left(-\infty,rac{1}{3}
ight)\cup(5,\infty)$

8. If the foot of perpendicular from the origin to a straight line is at

the point (3,-4),then the equation of the line is ____

A. a)3x-4y=25

B. b)3x-4y+25=0

C. c)4x+3y=25

D. d)4x-3y=24

> Watch Video Solution

9. The area boundede by the curves y=|x|-1and y=-|x|+1 is__

B. b)2 sqs.units

C. c)
$$2\sqrt{2}squares$$

D. d)4 sq.units

Watch Video Solution

10. A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected when reaching x-axis,the equation of refelcted ray is

A. a)y=x+1

B. b)
$$\sqrt{3}y = x - \sqrt{3}$$

C. c) $y=\sqrt{3}x-3$

D. d)none of these

13. If x be real show that $\cos \theta$ cannot be equal to x+1/x.

14. If
$$\cos heta = an^2 igg(rac{ heta}{2} igg)$$
 show that $\cos heta = \sqrt{2} - 1$

Watch Video Solution

15. If $an 15^\circ = x$ then show that $x^2 + 2\sqrt{3}x - 1 = 0$

16. If
$$\omega$$
be an imaginaryb cube root of unity, then prove that,
$$\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} = 0$$

Watch Video Solution

17. Show that the middle term in the expansion of $\left(x - \frac{1}{x}\right)^{2n}$ is

$$rac{1.3.5.7....\left(2n-1
ight)}{n!}ig(-2ig)^n$$

Watch Video Solution

18. Find the sum of all factors of the number 3645.

22. If t_1 and t_2 are the roots of the equation $t^2 + \lambda t + 1 = 0$, where λ is an orbitary constant, then prove that the line joining the point $(at_1^2, 2at_1)$ and $(at_2^2, 2at_2)$ always passes through a fixed point. Also find that point.

Watch Video Solution

23. Prove that $A imes (B \cup C) = (A imes B) \cup (A imes C)$

Watch Video Solution

24. Find the distance from the eye at which a coin must be placed so as just to hide the full moon. The diameter of coin being 2 cm and the diamter of the moon makes an angle 31'at the eye of the observer.

25. If
$$\cos(\alpha + \beta) = \frac{4}{5}$$
. $\sin(\alpha - \beta) = \frac{5}{13}$ and α , β lie between 0 and $\frac{\pi}{4}$ then find the value of $\tan 2\alpha$

26. Prove that
$$\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = -\frac{1}{2}$$

Watch Video Solution

27. Solve $:6x^2 - (5+3i)x + 11i - 3 = 0$ in the complex plane C.

Watch Video Solution

28. Find the sum of first n terms of the series: $\frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} \dots$

Watch Video Solution

31. The line joing two points A(2,0)and B(3,1)I rotated about A in anti clockwise direction through an angle of 15° . If B goes to C in the new position, what will be the co-ordinates of C?

x=0 and y+x=0

35. Show that
$$\operatorname{tan}\left(142\left(rac{1^\circ}{2}
ight)
ight)=2+\sqrt{2}-\sqrt{3}-\sqrt{6}$$

36. If A+B+C= π ,prove that :cosA+cosB-cosC=-1+4cosA/2cosB/2sinC/2.

Watch Video Solution

37. Solve :
$$rac{|x+3|+x}{x+2} > 1, x \in R$$
,

Watch Video Solution

38. Find principal amplitude of
$$\left(1+i an{\left(rac{3\pi}{5}
ight)}
ight)$$

39. A square is draw by joing the mid points of the sides of a given square. A third square is draw inside the second square in the same way and this process continues indefinitely. If the side if the first square is 16 cm. determine the sum of the areas of all the squares.

40. On the portion of the line x+3y-3=0 which is intercepted between the coordinate axes, a square is constructed on the side of line away from the origin .Find co-ordinates of the intersection of its diagonals.Also find the equation of the opposite side of the given side.

41. Find the locus of the midpoint of the chords of the parabola

 $y^2 = 4ax.$ which subtend a right angle at the vertex.

Watch Video Solution