©゙doubtnut

MATHS

BOOKS - UNITED BOOK HOUSE

JODHPUR PARK BOYS'S SCHOOL

EXERCISE

1. If $A=\left\{x \in C: x^{2}=1\right\}$ and $B=\left\{x \in C: x^{4}=1\right\}$, then $A \cup B$
is :
A. a) $\{-1, \mathrm{i}\}$
B. b) $\{-1,1\}$
C. c) $\{ \pm 1, \pm 1 i\}$
D. d) ϕ

D Watch Video Solution

2. Prove that $\frac{1}{2 \sin 10^{\circ}}-2 \sin 70^{\circ}=1$.
A. a) 0
B. b) 1
C. c)2
D. d)4

- Watch Video Solution

3. If $\cos A+\cos B=m$ and $\sin A+\sin B=n$, where $m, n \neq 0$ then $\sin (A+B)$ is
\qquad
A. a) $\frac{m n}{m^{2}+n^{2}}$
B. b) $\frac{2 m n}{m^{2}+n^{2}}$
C. c) $\frac{m^{2}+n^{2}}{2 m n}$
D. d) $\frac{m n}{m+n}$

- Watch Video Solution

4. If $1, \log _{9}\left(3^{1-x}+2\right)$ and $\log _{3}\left(4.3^{x}-1\right)$ are in A.P.,then x is equal to
A. a) $\log _{4} 3$
B. b) $\log _{3} 4$
C. c) $1-\log _{3} 4$
D. d) $\log _{3} 0.25$
5. $(666 \ldots n \times)^{2}+(888 . . n$ times) is equal to _-_
A. a) $\frac{4}{9}\left(10^{n}-1\right)$
B. b) $\frac{4}{9}\left(10^{2 n}-1\right)$
C. c) $\frac{4}{9}\left(10^{n}-1\right)^{2}$
D. d) none of these

- Watch Video Solution

6. If wis an imaginary cube root of unit,then the value of the expression
$\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+\left(3+\frac{1}{\omega}\right)\left(3+\frac{1}{\omega^{2}}\right)$
$+\ldots+\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)$ is
А. а) $\frac{n\left(n^{2}+2\right)}{3}$
B. b) $\frac{n\left(n^{2}-2\right)}{3}$
С. с) $\frac{n\left(n^{2}+1\right)}{3}$
D. d) none of these
7. Solution of $|2 x-3|<|x+2|$ is
A. a) $\left(-\infty, \frac{1}{3}\right)$
B. b) $(1 / 3,5)$
C. c) $(5, \infty)$
D. d) $\left(-\infty, \frac{1}{3}\right) \cup(5, \infty)$
8. If the foot of perpendicular from the origin to a straight line is at the point $(3,-4)$,then the equation of the line is \qquad
A. a) $3 x-4 y=25$
B. b) $3 x-4 y+25=0$
C. c) $4 x+3 y=25$
D. d) $4 x-3 y=24$

- Watch Video Solution

9. The area boundede by the curves $y=|x|-1$ and $y=-|x|+1$ is_
A. a)1sq.unit
B. b) 2 sqs.units
C. c) $2 \sqrt{2}$ squnits
D. d)4 sq.units

- Watch Video Solution

10. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected when reaching x-axis,the equation of refelcted ray is
A. a) $y=x+1$
B. b) $\sqrt{3} y=x-\sqrt{3}$
C. c) $y=\sqrt{3} x-3$
D. d) none of these
11. Let A, B, and C be the sets such that

$$
A \cup B=A \cup C \text { and } A \cap B=A \cap C . \text { Show that } B=C .
$$

Watch Video Solution

12. Find the domain and range of the relation p defined by $p=$ $\{(a, b): b=|a-1|, a \in Z$ and $|a| \leq 3\}$.

(D) Watch Video Solution

13. If x be real show that $\cos \theta$ cannot be equal to $x+1 / x$.

Watch Video Solution
14. If $\cos \theta=\tan ^{2}\left(\frac{\theta}{2}\right)$ show that $\cos \theta=\sqrt{2}-1$
15. If $\tan 15^{\circ}=x$.then show that $x^{2}+2 \sqrt{3} x-1=0$

- Watch Video Solution

16. If ω be an imaginaryb cube root of unity,then prove that, $\frac{1}{1+2 \omega}+\frac{1}{2+\omega}-\frac{1}{1+\omega}=0$

D Watch Video Solution

17. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is $\frac{1 \cdot 3 \cdot 5 \cdot 7 \ldots(2 n-1)}{n!}(-2)^{n}$

Watch Video Solution

18. Find the sum of all factors of the number 3645.
19. For any two positive numbers a and b,prove that $A M \geq G M$

- Watch Video Solution

20. Find the vaue of $9^{\frac{1}{3}} 9^{\frac{1}{9}} 9^{\frac{1}{27}} \ldots \infty$

- Watch Video Solution

21. Prove that the area of a triangle is invariant under the translation of axes.

- Watch Video Solution

22. If t_{1} and t_{2} are the roots of the equation $t^{2}+\lambda t+1=0$, where λ is an orbitary constant,then prove that the line joining the point $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ always passes through a fixed point.Also find that point.

- Watch Video Solution

23. Prove that $A \times(B \cup C)=(A \times B) \cup(A \times C)$

- Watch Video Solution

24. Find the distance from the eye at which a coin must be placed so
as just to hide the full moon. The diameter of coin being 2 cm and the diamter of the moon makes an angle 31'at the eye of the observer.
25. If $\cos (\alpha+\beta)=\frac{4}{5} \cdot \sin (\alpha-\beta)=\frac{5}{13}$ and α, β lie between 0 and $\frac{\pi}{4}$ then find the value of $\tan 2 \alpha$

- Watch Video Solution

26. Prove that $\cos \left(\frac{2 \pi}{7}\right)+\cos \left(\frac{4 \pi}{7}\right)+\cos \left(\frac{6 \pi}{7}\right)=-\frac{1}{2}$

- Watch Video Solution

27. Solve : $6 x^{2}-(5+3 i) x+11 i-3=0$ in the complex plane C .

- Watch Video Solution

28. Find the sum of first n terms of the series:
$\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}} \cdots$

- Watch Video Solution

29. Find n, if the ratio of the fifth term from beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ id $\sqrt{6}: 1$.

- Watch Video Solution

30. Find the natural number a for which $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$ where the function f satisifies $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})$ for $\mathrm{x}, \mathrm{y} \in \operatorname{Nand} \mathrm{f}(1)=2$.

D Watch Video Solution

31. The line joing two points $A(2,0)$ and $B(3,1) I$ rotated about A in anti clockwise direction through an angle of 15°.If B goes to C in the new position, what will be the co-ordinates of C ?
32. In what direction should a line be drawn through the pont $(1,2)$ so that its point of intersection with the Ine $x+y=4$ is at a disatnce.
$\frac{\sqrt{6}}{3}$ from the given point?

- Watch Video Solution

33. If $\left(\alpha^{2}, \alpha\right)$ lies inside the triangle bounded by the lines $x-5 y+6=0, x-$
$3 y+2=0$ and $x-2 y-3=0$ then find the value of α

- Watch Video Solution

34. Find the equations of the circles which passes through the origin and cuts off equal chords of length a from the straight line y $\mathrm{x}=0$ and $\mathrm{y}+\mathrm{x}=0$

(b) Watch Video Solution

35. Show that $: \tan \left(142\left(\frac{1^{\circ}}{2}\right)\right)=2+\sqrt{2}-\sqrt{3}-\sqrt{6}$

- Watch Video Solution

36. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, prove that : $\cos \mathrm{A}+\cos \mathrm{B}-\cos \mathrm{C}=-1+4 \cos \mathrm{~A} / 2 \cos \mathrm{~B} / 2 \sin \mathrm{C} / 2$.

- Watch Video Solution

37. Solve : $\frac{|x+3|+x}{x+2}>1, x \in R$,

D Watch Video Solution

38. Find principal amplitude of $\left(1+i \tan \left(\frac{3 \pi}{5}\right)\right)$
39. A square is draw by joing the mid points of the sides of a given square.A third square is draw inside the second square in the same way and this process continues indefintely.lf the side if the first square is 16 cm .determine the sum of the areas of all the squares.

- Watch Video Solution

40. On the portion of the line $x+3 y-3=0$ which is intercepted between the coordinate axes, a square is constructed on the side of line away from the origin .Find co-ordinates of the intersection of its diagonals.Also find the equation of the opposite side of the given side.
41. Find the locus of the midpoint of the chords of the parabola $y^{2}=4 a x$.which subtend a right angle at the vertex.

D Watch Video Solution

