

MATHS

BOOKS - UNITED BOOK HOUSE

KALIDHAN INSTITUTION

Exercise

1. If $\sin heta + \sin \phi = 2$,then what is the value of

 $\cos(\theta + \phi)$?

- A. a)0
- B. b)1
- C. c)-1
- D. d)2

Watch Video Solution

2. If z and w are two non-zero complex numbes such that |z|=|w| and $argz+arg.w=\pi$, then the value of z is

- A. a) \overline{w}
- B. b)- \overline{w}
- C. c)w
- D. d)-w

G.P if a

Watch Video Solution

3. Suppose a,b,c are in A.P and a^2 , b^2 , c^2 are in

A. a)
$$\frac{1}{2\sqrt{2}}$$

B. b)
$$\frac{1}{2\sqrt{3}}$$

$$\mathsf{C.\,c)}\frac{1}{2}-\frac{1}{\sqrt{3}}$$

D. d)
$$rac{1}{2}-rac{1}{\sqrt{2}}$$

Watch Video Solution

4. The number of terms in the expansion of

$$(a+b+c)^{10}$$
is

- A. a)55
- B. b)66
- C. c)33
- D. d)44

Watch Video Solution

5. The equation of a line which makes an angle

 $45\,^{\circ}\,\mathrm{with}$ x-axis and cuts the y=axis is at (0,3) is

A. a)
$$y=x+3$$

B. b)
$$y=3$$

C. c)
$$x=3$$

D. d)None of these

Answer:

Watch Video Solution

6. The point P divides the line-segment joining the points A(1,5)and B(-4,7) internally in the

ratio 2:3.State which of the following is abscissa of P?

A. a)-1

B. b)11

C. c)1

D. d)-11

Answer:

7. The digit in the unit's place of the number

$$\left[(183)! + 3^{183}
ight]$$
 is-

- A. a)4
- B. b)2
- C. c)3
- D. d)7

Answer:

8. The maximum value of $\sin \theta \cos \theta$ is

A. a)1/2

B. b)1

C. c)2

D. d) ∞

Answer:

9. There are two children in a family.One of them is a girl child .What is probability that the other one is also a girl child?

- A. a)0
- B. b)1/2
- C. c)1
- D. d)cant be determined.

Answer:

10. The probability that in a family of 5 members, exactly 2 members have birthday on Sunday is -

A. a)
$$\dfrac{12 \times 5^3}{7^5}$$

B. b)
$$\frac{10 \times 6^2}{7^5}$$

D. d)
$$\frac{10 \times 6^3}{7^5}$$

Answer:

11. The angles of a triangle are in the ration 5:4:3 .Find the circular measure of the greatest angle.

Watch Video Solution

12. Prove that,
$$\sqrt{rac{\sec heta - 1}{\sec heta + 1}} = \cos ec heta - \cot heta$$

13. If A,B,C are positive acute angles and $an A = rac{4}{7}$ and tan B=1/7,tan C=1/8 prove that

$$A+B+C=45^{\circ}$$

14. Find the value of $\frac{1}{2}\sec 80^{\circ} - 2\cos 20^{\circ}$

15. Find out the three cube-roots of 8.

16. In how many ways can the results of the three football matches be predicted?

17. State the binomial theorem for a positve integral index.

18. Is 600 a terms of the A.P{7,11,15,19,...}.Give reason for your answer.

Watch Video Solution

19. Find the equation of the line which passes through the point (4,-6)and mkes intercepts on the axes equal in magnitude.but opposite in sign.

20. The co-ordinates of a moving point P are.

$$\left[rac{a}{2}(\cos ec heta + \sin heta)rac{b}{2}(\cos ec heta - \sin heta)
ight]$$

where heta is a variable parameter. Show that,the equation to the locus of P is $b^2x^2-a^2y^2=a^2b^2$

21. Find the value of p so that the roots of the equation $3x^2-2(7+9p)x+(8-5p)=0$ are reciprocal to one another.

22. Do you think 4 as a complex number?if so why?

Watch Video Solution

23. Two unbaised dice are rolled together. Find the probability getting 2 digits, the sum of which is 7.

24. What is the chance that a leap year selected at random will contain 53 sundays?

Watch Video Solution

25. $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$

prove that

$$an\!\left(rac{lpha-eta}{2}
ight)=\ \pm\sqrt{rac{4-a^2-b^2}{a^2+b^2}}$$

$$\sin heta = k \sin (heta + \phi)$$
.show

that

$$an(heta+\phi)=rac{\sin\phi}{\cos\phi-K}$$

Watch Video Solution

27. Prove by the principle of mathematical induction that $4^n + 15n - 1$ is a mulitple of 9 for all $n \in N$.

28. If w be a imaginary cube root of uniyt and $a+b+c=0 \qquad \text{then} \qquad \text{show} \qquad \text{that} \\ \left(a+bw+cw^2\right)^3+\left(a+bw^2+cw\right)^3=27abc$

Watch Video Solution

29. In a machine, there is a password of five characters of which the first three letters and the last two are digits. How many passwords can be formed?

30. If the term independent of x in the expansion of $\left(\frac{k}{3}x^2-\frac{3}{2x}\right)^9$ be 2268,find the value of K.

Watch Video Solution

31. Find the sum $:3.1^2 + 4.2^2 + 5.3^2 +$ upto n terms.

32. A straight line passes through the point (2,3) and is such that the portion of intercepted between the axes is divided internally at that point in the ration 4:3.Find the equaiton of the straight line.

Watch Video Solution

33. Find the image of the point (3,8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.

34. The sum of the distances of a moving point from the points (c,0) and (-c,0) is always 2a unit (a>c). Find the equation to the locus of the moving point.

Watch Video Solution

35. If the sum of first n terms of a G.P is p and the sum of the first 2n terms is 3p,show that the sum of first 3n terms is7p.

36. The roots of the equation
$$x^2+3x+4=0$$
are $lpha$ and eta . Form the equations whose roots are $(lpha+eta)^2$ and

 $(\alpha - \beta)^2$

37. Foe any two events A and B prove that , $P(A) \geq P(A \cap B) \geq P(A) + P(B) - 1$

38. Two fair dice are thrown simultaneously .The two scores are then multiplied together.Calculate the probability that the product is A)12 and B)even.

Watch Video Solution

39. Find the maximum and minimum values of $3\sin\theta + 4\cos\theta + 5$

40. Find the locus of a point which forms a triangle of area 21 square unit with the points (2,-7)and (-4,3).

Watch Video Solution

41. Show that

$$\sin 16^{\circ} + \cos 16^{\circ} = rac{1}{\sqrt{2}} ig(\sqrt{3} \! \cos 1^{\circ} + \sin 1^{\circ}ig)$$

42. Sin A=m sin B,show that

$$an\!\left(rac{A-B}{2}
ight) = rac{m-1}{m+1} an\!\left(rac{A+B}{2}
ight)$$

Watch Video Solution

43. Exhibit graphically the solution sets of the following system of linear inequations.

$$x-2y \leq 3$$
, $3x+4y \geq 12$, $x \geq 0$, $y \geq 0$

44. State the fundamental theorem of algebra.solve the following in the complex space: $6x^2 - (18 + 5i)x + 18 + i = 0$

Watch Video Solution

45. How many 4 digit numbers can be formed form the digits,1,1,2,2,3,3,4,4,5,5?

46. Find the sum upto r

terms:0.7+0.77+0.777+...

Watch Video Solution

47. The co-ordinates of A,B,C are (6,3),(-3,5)and

(4,-2) respectively and P is the point (x,y) show

that ,
$$rac{area of the \ riangleq PBC}{area of the \ riangle ABC} = \left|rac{x+y-2}{7}
ight|$$

48. The equations of two sides of a square are 5x+12y-10=0 and 5x+12y+29=0 and the third side passes through (3,5):find equations of all other possible sides of the square.

Watch Video Solution

49. Find the equations of the lines passing thorugh the point (4,5)making equal angles with the lines 3x=4y+7 and 5y=12x+6.

50. Write the two meanings of statistics.

Watch Video Solution

51. Define attribute with examples.

Watch Video Solution

52. Distinguish between discrete and continuous variable.

53. Define primary data with examples.

Watch Video Solution

54. Define time-series data with examples.

Watch Video Solution

55. Define Pilot survey.

56. Define tabulation.

Watch Video Solution

57. Write two uses of ogive.

58. If ω is the imaginary cube root of unity and

a+b+c=0 then show that
$$\left(a+b\omega+c\omega^2\right)^3+\left(a+b\omega^2+c\omega\right)^3=27abc$$

59. Define impossible event with examples.

60. Describe the different parts of a table.

61. Describe the different parts of a table.

Watch Video Solution

62. Distinguish between Histogram and Bar diagram.

63. Write the uses of Geometric mean.

Watch Video Solution

64. Show that $\sum_{i=1}^n (x_i - A)^2$ is minimum when $A = \bar{x}$.

Watch Video Solution

65. Prove that $ar{x}_1 < ar{x} < ar{x}_2$ where the symbols have their usual meanings.

66. If y = a + bx, then show that Me(y) = a + b Me(x).

67. Show it with an experiment that different materials have different ability to conduct heat through them.

68. Write the classical definition of probability and state its limitations.

Watch Video Solution

69. For any two events A and B, show that,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

70. How would you construct a frequency distribution of a continuous variable?

Watch Video Solution

71. A variable takes values, a, ar, ar^2 ,..... ar^{n-1} with equal frequencies. Find AM, GM and HM and hence show that $(GM)^2 = A. M. \times H. M.$

72. State and prove Cauchy-Schwartz inequality.

