

MATHS

BOOKS - UNITED BOOK HOUSE

MODEL QUESTION PAPERS-SET 15

Exercise

1. If B set is the power set of set A, then the correct option is.

A. a)A=B

B. b)
$$A \in B$$

C. c)
$$A\supset B$$

D. d)
$$B\supset A$$

Watch Video Solution

2. Amplitude of the complex number z= 1 is

A. a)
$$-\pi/2$$

C. c)
$$\pi/2$$

D. d)
$$\pi$$

Watch Video Solution

3. In the expansion of $\left(C+\frac{1}{C}\right)^{10}$,the term independent of C is

Watch Video Solution

- **4.** If the arithmetic mean of x and y is $rac{x^n+y^n}{(x^{n-1}+y^{n-1})}$,then the value of n is
 - A. a)0
 - B. b)1
 - C. c)2
 - D. d)-1

Answer:

5. The gra'diant of the line perpendicular to the line

$$x/7-y/3+1=0$$
is

- A. a)7/3
- B. b)3/7
- C. c)-3/7
- D. d)-7/3

Answer:

$$x^2+y^2=2$$
, then the value of $|\mathsf{c}|$ is

- A. a)2
- B. b) $\sqrt{2}$
- C. c)1
- D. d)0

Watch Video Solution

7. If $\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \frac{M}{N}$ and M = 3, then the value of N is

B. b)4

C. c)6

D. d)8

Answer:

Watch Video Solution

8. If
$$y= an^{-1}\Big(rac{1+x}{1-x}\Big)$$
 then dy/dx=

A. a)1

 $\mathsf{B.\,b)}\frac{1}{1+x^2}$

C. c)
$$\dfrac{2}{1+x^2}$$
D. d) $\dfrac{1-x^2}{1+x^2}$

- 9. An unbaised coin is tossed two times, the probability of getting 'head' in both case will be.
 - A. a)1/2
 - B. b)1
 - C. c)1/4

D. d)3/4

Answer:

Watch Video Solution

10. If the coefficent of variation = 40% and variance =

16, the mean will be

A. a)5

B. b)10

C. c)15

D. d)20

11. If n(X) = 4 and n(Y) = 7, then find the maximum and minimum value of $n(X \cup Y)$.

12. Given R = {(x, y) : x, $y \in N$ and 2x + 3y = 9}.' Find R as sets of ordered pair. '

13. Find the value of $\tan 20^{\circ} \tan 40^{\circ} \tan 80^{\circ}$.

Watch Video Solution

14. In $\triangle PQR$, $\angle P=60^{\circ}$, show that $q+r=rac{q-p}{2}$

15. If $z=rac{\sqrt{3}-i}{2}$, then Find the. value of z^{33}

16. If ^25C_r= $^{^{^{^{^{^{^{2}}}}}}25C_{2r+1}}$,the value of ^rC_5`is

Watch Video Solution

17. If $(1+x)^n=C_0+C_1x+C_2x^2+\ldots +C_nx^n$.then show that $C_1+2C_2+\ldots$ nC n=n.2^(n-1)`.

Watch Video Solution

18. Calculate the sum of the series

$$3 - \frac{3}{2} + \frac{3}{2^2} - \frac{3}{2^3} + \dots$$

19. Find the length of the intercept of the staight line

3x + 4y = 12 with the axes

Watch Video Solution

20. Find the image of the co-ordinate of a point.(-3, 4,

7) with respect to yz plane.

Watch Video Solution

21. Find the value of : $\lim_{x\to 0} \frac{\sin 2x + \sin 6x}{\sin 5x - \sin 3x}$

22. If 4f(x)+3f(-x)=7-3x, find the value of f(1).

23. A box contains 6 white balls and 4 black balls, A ball is drawn at random from the box. What is the probability that the ball is white.

24. Mean of the getting mathematics number of 70 students is 45. If SD is. 18, then find the co-efficient of

variation

25. A and B are two sets and if n(A) = 4 and n(B) = 7, then find the minimum value of $n(A \cup B)$ and the maximum value $n(A \cap B)$

26. Show that
$$\cot 7 \left(\frac{1^{\circ}}{2} \right) = 2 + \sqrt{2} + \sqrt{3} + \sqrt{6}$$

27. If $a^4+b^4+c^4+a^2b^2=2c^2ig(a^2+b^2ig)$, then show that $\angle C=60^\circ$ or 120°

28. Byin "Principle of Mathematical Induction" prove that for all $n \in N$

$$1^2+2^2+3^2+..... + n^2 = rac{n(n+1)(2n+1)}{6}$$

29. If w be a imaginary cube root of uniyt and a+b+c=0 then show that

$$\left(a+bw+cw^2\right)^3+\left(a+bw^2+cw\right)^3=27abc$$

30. How many different numbers of 5 digits each (without repetition of digits) can be formed with the digits-5, 6, 7, 8,0 so that the numbers are divisible by 4".

31. Prove that the middle term in the expansion of $(1+x)^{2n}$ is $\frac{1.3.5......(2n-1)}{1...}.2^n.x^n$

32. Show that the points (-4, 0). (6, 4), (5, 0) and (0, -2) form a trapezium. Find the equations of its two diagonals and also find the angle (acute) between the two diagonals.

33. If p and q are the lengths of perpendiculars from the origin to the lines
$$x\cos\theta-y\sin\theta=k\cos2\theta$$
 and $x\sec\theta+y\cos ec\theta=k$, respectively, prove that $p^2+4q^2=k^2$.

Water video solution

34. Find the equation to the circle described on the common chord of the given circles $x^2+y^2=4x+5$ and $x^2+y^2+8x+7=0$ as diameter.

35. Find the ratio in which the ZX plane divides the line segment joining the .points (2, 4, 5) and (3, -6, 8).

36. Evaluate : $\lim_{x\to 0} \frac{x-\sin x}{r^3}$

37. If $y=\sin x^\circ$.find dy/dx from defination.

38. Prove that $\sqrt{2}$ irrational, (use the method of contradiction).

39. If x and y are odd integers, then xy is also an odd integer r examine its truth value.

40. The probability of' the solving a problems in mathematics of three students are 1/3,1/5,1/6. If they try to solve the problem together, find the probability that the problem is solved by at least one student.

41. Scores of a batsman of 5 consecutive inings are 39, 51, 59, 62 and 74. Find the mean diviation of the samples .with respect to AM and median.

Watch Video Solution

42. If lpha
eq eta and $a anlpha+b aneta=(a+b) anigg(rac{lpha+eta}{2}igg)$,then show that $rac{\coslpha}{\coseta}=rac{a}{b}$

43. Show that $\tan \alpha \tan \beta = \tan^2 \gamma$ when $\frac{\tan(\alpha-\beta)}{\tan \alpha} + \frac{\sin^2 \gamma}{\sin^2 \alpha} = 1$

44. Sum of the square of three different terms, which are in GP is s^2 . If the sum of the three terms is α s, show that $1/3 < \alpha^2 < 3$.

45. Draw the graph and find the common solution region of the . following system of inequations :

2x + y > 6, 3x + 4y > 2.

Watch Video Solution

46. Solve. $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

Watch Video Solution

47. If the roots of the quadratics $x^2 - qx + p = 0$ and $x^2-px+q=0 (p
eq q)$ differ by a constant, show.that p + q + 4 = 0.

48. Find the equation of a hyperbola whose eccentricity is 5/4 and the coordinate of foci are (2, -3)and (2, 5).

Watch Video Solution

49. The co-ordinates of focus and its nearest vertex of an ellipse are (3, -5) and (4, -5) respectively and eccnetricity is 2/3. Find the co-ordinate of its centre and the co-ordinate of the point of contact of. the directrix and Major axis nearest to focus.

50. If I and I' be the lengths of the segment \overline{PS} and $\overline{P'S}$ of a focal chord $\overline{PP'}$ of the parabola $y^2=4ax$.then show that 1/I+1/I'=1/a when s is the focus of the parabola

