

MATHS

BOOKS - UNITED BOOK HOUSE

MODEL QUESTION PAPERS-SET 3

1. If. b $\sin\beta$ = $a\sin(2\alpha + \beta)$ then the value of $\frac{\cot(\alpha + \beta)}{\cot \alpha}$

A. a)
$$\frac{a-b}{a+b}$$

B. b) $\frac{b-a}{a+b}$
C. c) $\frac{a+b}{a-b}$
D. d) $\frac{a+b}{b-a}$

Answer:

Watch Video Solution

2. $5^{2n+1}+3^{4n+2} (n\in N)$ is divisible by

A. a)4

B. b)8

C. c)14

D. d)16

Answer:

Watch Video Solution

3. If P, 2P + 2, 3P + 3 are in G.P. the 4th term Will be

A. a)-27/2

B.b)27/2

C. c)-27

D. d)27

Answer:

Watch Video Solution

4. If
$$\left(\frac{1-i}{1+i}\right)^r$$
 is always real then the least value of r is

A. a)8

B.b)6

C. c)4

D. d)2

Answer:

Watch Video Solution

5. The straight line 3x+y=9 divides the straight line segment joining the points (1, 3) and (2, 7) are in ratio

A. a)3:4

B.b)-3:4

C. c)4:5

D. d)-4:5

Answer:

Watch Video Solution

6. If the point $Pig(at^2,2atig)$ is a end point of a chord of the parabola $y^2=4ax$ which is passes

through the focus, then the length of the chord is

A. a)
$$\left(t + \frac{1}{t}\right)unit$$

B. b) $\left(t + \frac{1}{t}\right)^2 unit$
C. c) $a\left(t + \frac{1}{t}\right)unit$
D. d) $a\left(t + \frac{1}{t}\right)^2unit$

Answer:

7. The value of $\lim_{x
ightarrow\pi} rac{\sin x}{x-\pi}$ is

A. a)0

B. b)-1

C. c)1

D. d)undefines.

Answer:

8. If $y = \sin x \sin lpha, then rac{dy}{dx} =$

A. a) $\cos x \cos \alpha$

B. b) $\cos x \sin \alpha$

C. c) $\sin x \cos \alpha$

D. d)0

Answer:

9. The median of 22,20, 22, 25, 19, 30, 27 is

A. a)19

B. b)20

C. c)22

D. d)30

Answer:

10. variance of 1st n natural number is

A.
$$\frac{n^2 + 1}{12}$$

B. b) $\frac{n^2 - 1}{10}$
C. c) $\frac{n^2 - 1}{6}$
D. d) $\frac{n^2 - 1}{12}$

Answer:

11. $(A^c \cup A)^c = \phi$ is the relation true of false?

Give reason.

Watch Video Solution

12. If the realtion R defined as the set $S = \{1.-2, 3, 4\}, \forall, a, b \in s, aRb$, if and- only if b is the double of a. Find the set R.

13. Show that
$$\sec heta + an heta = an igg(rac{\pi}{4} + rac{ heta}{2} igg)$$

14. In $\triangle ABC$, if a = 3. b = 5 and c =7, show

that the triangle is obtused.

Watch Video Solution

15. If $|z+2|+|z-2|\leq 6$, find the maximum

value of I z I.

18. Find the sum of the following infinite G.P

series 0.9+0.81+0.792+....

Watch Video Solution

19. Show that the distance between (1,-1) and

$$\left(rac{2m^2}{1+m^2}, rac{\left(1-m
ight)^2}{1+m^2}
ight)$$
is not depend on m

20. Find the radius of sphere passing through

(2,0,1) and having centre(0,-4,1).

24. In.an examination. 50%of the condidates have passed in mathematics 50% have passed in physics, while 41% have passed in both the subjects. Find the total number of candidates

if..41 of them have failed in both subjects. (By.,

using set theory).

25. If A,B,(A - B)are positive acute angles, then

prove that geometrically : cos (A - B) = cos A

cos B + sin A sin B

26. Show that

$$\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = -\frac{1}{2}$$

Watch Video Solution

27. Show that
$$a^6+a^4+a^2+1=0$$
,when $a=rac{1}{\sqrt{2}}(1+i)$

28. Prove by mathematical induction: $(3^{4n+1} + 2^{2n+2})$ is divisible by 7.

29. Show that the co-efficient of the middle term of the expansion of $(1 + x)^{12}$ is equal to the sum of the co-efficient of middle terms of.'the expansion of $(1 + x)^{11}$.

30. If $\left(\frac{y}{z}\right)^a$. $\left(\frac{z}{x}\right)^b$. $\left(\frac{x}{y}\right)^c = 1$ and a,b,c are in

A.P ,show that x,y,z are in G.P.

Watch Video Solution

31. In $\triangle XYZ$ the equation of the perpendicular bisector of XY and XZ arc x-y + 5 = 0 and x + 2y= 0, If the coordinate of x is (1.-2), then find the equation of YZ.

32. Find the distance of the point (3. 5) from the line 2x + 3y = 14measured parallel to th line x - 2y= 1,

Watch Video Solution

33. The end' points of a rod having length I are moving a long with two straight line which are perpendicular toeach othcr. Find the equation -of the locus of the point which divides the rod are in ratio 2:1.

34. Find the equation of a circle .which passes through (-2. 1) and touches the straight line 3x

36. Differentiate a^x with respect to x (a> 0)

with the help 1st principle.

Watch Video Solution

37. '180 is the multiple of 4 or 5 examine the

validity of the compound statement.

38. 'x is such a real number that $4x^3 + 3x = 0$, then x = O'. Find the truth value of this compound statement by the method of contra-diction.

Watch Video Solution

39. The AM and SD of the marks obtained in the subjects' Bengali, .English and History of 50 students',in a class are given below

	Bengali	English	History
AM	42	32	40.9
SD	12	15	20

Find the

maximum and minimum variability of the

subjects with respect to obtained marks.-

Watch Video Solution

40. If
$$\cos \alpha = \frac{\sin y}{\sin x}$$
, $\cos \beta = \frac{\sin z}{\sin x}$ and $\cos(\alpha - \beta) = \sin y \sin z$. Show that $\tan^2 x = \tan^2 y + \tan^2 z$

43. Solve
$$:x^2 + rac{x}{\sqrt{2}} + 1 = 0$$

46. An equilateral triangle inscribe a parabola $y^2 = 4ax$. such that one of the vertex of the triangle lies on the vertex of the parabola. Find the, length of, the each side. of the triangle:

47. If the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 passes through
the intersecting points of two straight lines 7x
+ 13y -87=0 and 5x -8y + 7 = 0 and the length of

its latus rectum is $\frac{32\sqrt{2}}{5}$ then find the value of

a and b and also find its eccentricity

Watch Video Solution

48. PQ is the double ordinate of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and O is the centre of the hyperbola. If triangle OPQ is an equilateral triangle, then show that the eccentricity of this hyperbola is e) $e^2 > \frac{4}{3}$