© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - UNITED BOOK HOUSE

NAVA NALANDA

Exercise

1. If A and B are disjoint sets,then
A. a) $A \times B \subset B \times A$
B. b) $B \times A \subset A \times B$
C. c) $A \times B=B \times A$
D. d) $A \times B$ and $B \times$ Aaredisj \oint

Answer:

2. The domain for which the fucntions defined by $f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal is
A. a) $\{+1,4 / 3\}$
B. b)(-1,4/3)
C. c) $[-1,4 / 3]$
D. d)none of these.

Answer:

Watch Video Solution

3. A value of θ lying between 0 and 2pie, which satisfies $\cot \theta=\frac{1}{\sqrt{3}}$ and $\operatorname{cosec} \theta=-\frac{2}{\sqrt{3}}$ is
A. a) $\left(\frac{4 \pi}{3}\right)$
B. b) $\frac{\pi}{3}$
C. c) $((2 \mathrm{pi}) / 3)^{\prime}$
D. d) $\left(\frac{5 \pi}{3}\right)$

Answer:

- Watch Video Solution

4. IF x and be are real numbers and $b>0,|x|>b$ then
A. a) $x \in(-+b, \infty)$
B. b) $x \in(-\infty, b)$
C. c) $x \in(b, b)$
D. d) $x \in(-\infty, b) \cup(b, \infty)$

Answer:

5. If z_{1} and z_{2} are any two complex numbers,then which of the following is not true
A. a) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
B. b) $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
C. c) $\left|z_{1}-z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$
D. d) $\left|z_{1}\right|-\left|z_{2}\right| \geq\left|z_{1}-z_{2}\right|$

Answer:

Watch Video Solution

6. The values of $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to
A. а) $\frac{4 \sin 20^{\circ}}{\sin 40^{\circ}}$
B. b) $\frac{2 \sin 20^{\circ}}{\sin 40^{\circ}}$
C. c) 4
D. d)2

Answer:

D Watch Video Solution

7. The intercept cut off by a line from y-axis is twice that from x-axis and the line passes throught the point $(1,2)$. The equation of the line is
A. a) $2 x+y+4=0$
B. b) $2 x+y=4$
C. c) $2 x-y=4$
D. d) $2 x-y+4=0$

Answer:

- Watch Video Solution

8. Number of diagonals of a convex hexagon is
A. a)3
B. b) 6
C. c) 9
D. d) 12

Answer:

- Watch Video Solution

9. If A and B are any two events having $P(A \cup B)=1 / 2$ and $P(\bar{A})=\frac{2}{3}$,then $P(\bar{A} \cap B)$ is
A. a) $1 / 2$
B. b) $2 / 3$
C. c) $1 / 3$
D. d) $1 / 6$

Answer:

10. Standard deviation of first 10 natural numbers is
A. a) 5.5
B. b)3.87
C. c) 2.97
D. d) 2.87

Answer:

- Watch Video Solution

11. For any two sets, show that $(A \cap B) \cup(A-B)=A$.

Watch Video Solution
12. Let $\mathrm{X}=\{0,-1,1,2,-2\}$ and $\mathrm{Y}=\{0,1,2,3,4,6\} \mathrm{f}: X \rightarrow Y$ be defined as $f(x)=x^{2}+x$ for all $x \in X$ find the range of f.also find $\mathrm{f}(\mathrm{A})$ where $\mathrm{A}=$ \{0,-1,-2\}.

- Watch Video Solution

13.

Prove
that
$\sin x+\sin y+\sin z-\sin (x+y+z)=4 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{y+z}{2}\right) \sin (\underline{z}$

- Watch Video Solution

14. Prove that $\sin \left(\frac{\pi}{14}\right) \sin \left(\frac{3 \pi}{14}\right) \sin \left(\frac{5 \pi}{14}\right)=\frac{1}{8}$

Watch Video Solution
15. Solve : $|z|=z+\overline{1-2 i}$
16. In how many of the distinct permutaions of the letters in MISSISIPPI do the four is I's not come together?

- Watch Video Solution

17. Solve : $x^{2}-(3 \sqrt{2}-2 i) x-6 \sqrt{2} i=0$

- Watch Video Solution

18. For any complex number z,prove that $|\operatorname{Re}(z)|+\left|I_{m}(z)\right| \leq \sqrt{2}|z|$

- Watch Video Solution

19. Find the direction in which a straight line must be drawn through the point $(-1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance of 3 units from this point.
20. Find the area of the triangle formed by the lines joingn the vertex of the parabola $x^{2}=24 y$ to the ends of its latus rectum.

- Watch Video Solution

21. Find the domain of definition of the function $f(x)=\frac{1}{\ln (1-x)}+\sqrt{x+2}$

- Watch Video Solution

22. Prove that $(A \cup B)^{c}=A^{c} \cap B^{c}$ [without venn-diagram]

- Watch Video Solution

23. Four digit number are formed by using the digits $1,2,3,4$ and 5 wihout repeating any digit.Find the probability that a number chosen at random is an odd number.

- Watch Video Solution

24. Find the mean deviation about the median for the following data:

x_{i}	3	6	9	12	13	15	21	22
f_{i}	3	4	5	2	4	5	4	3

- Watch Video Solution

25. For any three sets A, B, C, Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

- Watch Video Solution

26.

$$
A+B+C=\pi, \text { prove }
$$

$\sin ^{2}\left(\frac{A}{2}\right)+\sin ^{2}\left(\frac{B}{2}\right)+\sin ^{2}\left(\frac{C}{2}\right)=1-2 \sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)$

(Watch Video Solution

27. Solve $: \tan x+\tan \left(x+\frac{\pi}{3}\right)+\tan \left(x+\frac{2 \pi}{3}\right)=3$

- Watch Video Solution

28. Using the principle of mathematical induction prove that $3^{2 n+1}+2^{n+2}$ is divisible by $7[n \in N]$

- Watch Video Solution

29. If α and β are different complex numbers with $|\beta|=1$, then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$
30. A question paper contains 12 questions divided into three parts.Parts A contains 6 questions while B and C contains 3 questions each. A candidate is required to attempt 6 questions selecting at least two from part A and atleast one from each of the parts B and C.In how many ways can the candidate select 6 questions?

- Watch Video Solution

31. Prove that the inequations $\frac{2 x+1}{7 x-1}>5$ and $\frac{x+7}{x-8}>2$ have no solutions

- Watch Video Solution

32. Exhibit graphically the solution region of the following system of 'inequations : $2 x+y \geq 4, x+y \leq 3,2 x-3 y \leq 6, \mathrm{x}>0, \mathrm{y}>0$
33. Prove that the product of the lengths of the perpendiculars drawn from the points $\left(\sqrt{a^{2}-b^{2}}, 0\right)$ and $\left(-\sqrt{a^{2}-b^{2}}, 0\right)$ to the line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ is b^{2}.

- Watch Video Solution

34. Find the equation of a circle which touches both the axes and the line $3 x-4 y+8=0$ and which lies in the third quadrant.

- Watch Video Solution

35. The focus of a parabola is (1,5)and its directrix is $x+y+2=0$. Find the equation of parabola.Find its vertix and length of latus rectum.

- Watch Video Solution

36. $3(1-x)<2(x+4)$
37. Prove that every function can be expressed as the sum of an -even and an odd function.

- Watch Video Solution

38. A, B, C are three finite sets such that $n(A)=17, n(B)=13, n(C)=15$, $n(A \cap B)=9, n(B \cap C)=4, n(C \cap A)=5$ and $\quad \mathrm{n}(\mathrm{S})=50$, $n(A \cap B \cap C)=3$. find $\quad n\left(A \cap B^{c} \cap C^{c}\right), n\left(B \cap A^{c} \cap C^{c}\right)$, $n\left(C \cap A^{c} \cap B^{c}\right), n(A \cap B \cap C)^{c}$

- Watch Video Solution

39. Draw the graph of $f(x)=|x-1|+|x-2|$.

- Watch Video Solution

40. Whats is the probability of arrangement of the letters of the word SOCIETY so that three vowels come together?.

- Watch Video Solution

41. The mean and standard deviation of 100 observations were calculated as 40 and 5.1 , respectively by a student who took by mistake 50 instead of 40 for one observation. What are the correct mean and standard deviation?

- Watch Video Solution

42. Prove that $\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}=1$

- Watch Video Solution

43. Solve $: \cos 3 x+\cos 2 x=\sin \left(\frac{3 x}{2}\right)+\sin \left(\frac{x}{2}\right),(0 \leq x \leq \pi)$
44. if $\frac{1-i x}{1+i x}=a-i b$,then prove that $a^{2}+b^{2}=1(\mathrm{a}, \mathrm{b} \times$ are real).

- Watch Video Solution

45. Solve graphically : $|x-y| \geq 3$.

- Watch Video Solution

46. How many different numbers of 4 digits each can be formed with the digits9,9,5,5,,3,3,4,6.

- Watch Video Solution

47. Solve : $12 x^{4}-56 x^{3}+89 x^{2}-56 x+12=0$

- Watch Video Solution

48. Show that the area of the triangle formed by the lines
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $x=0$ is $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$

- Watch Video Solution

49. Find the equation of the circle described on the common chord of the circles $x^{2}+y^{2}-4 x-5=0$ and $x^{2}+y^{2}+8 x+7=0$ as diameter.

- Watch Video Solution

50. Show that the sum of the reciprocals of the segments of any focal chord of a parabola $y^{2}=4 a x$ is constant.

- Watch Video Solution

51. If $2 x^{4}-7 x^{3}+a x+b$ is divisible by ($x-3$), then the relation between a and b is
A. $3 b+a=27$
B. $3 a+b=27$
C. $3 a+b=-27$
D. $3 b+a=-27$

Answer:

D Watch Video Solution

52. The $A M$ of $1,2, \ldots$, n with frequencies $1^{2}, 2^{2}, \ldots n^{2}$ respectively is

D Watch Video Solution

53. All order raw moments are affected by the change of
A. base only
B. scale only
C. both base and scale
D. none of these

Answer:

- Watch Video Solution

54. A negative coefficient of skewness implies that
A. mean $>$ median
B. mean $<$ median
C. mean = median
D. none of these

Answer:

- Watch Video Solution

55. The values of $\Delta\left\{\frac{f(x)}{g(x)}\right\}$ is
A. а) $\frac{f(n+h)}{g(x+h)}$
в. b) $\frac{f(x+h)-f(x)}{g(x+h)-g(x)}$
с. с) $\frac{g(x) \Delta f(x)-f(x) \Delta g(x)}{g(x) g(x+h)}$
D. d) $\frac{g(x+h) f(x+h)-g(x) f(x)}{g(x+h) f(x+h)}$

Answer:

- Watch Video Solution

56. The H.M of 7 values $1 / 2,1 / 3,1 / 4,1 / 5,1 / 6,1 / 7$ and $1 / 8$ is

- Watch Video Solution

57. If the relationship between two variables y and v is $v-3 y=6$ and S.D. of y is 2 , then the variance of v is .(fill in the blank)

- Watch Video Solution

58. Numerically the measure of skewness in terms of quartiles cannot exceed 1 (write True or false)

- Watch Video Solution

59. Find the standard deviation of the following quantities: 5, 5, 5, 7, 7, 7

- Watch Video Solution

60. State Remainder theorem.

- Watch Video Solution

61. What do you mean by C_{4} cycle? Show C_{4} cycle with the help of word digram.

- Watch Video Solution

62. What is the condition that the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in G.P.

- Watch Video Solution

63. If $x^{4}+5 x^{3}+4 x^{2}+8 x+24$ is divided by $(x+2)$, then find the remainder.

- Watch Video Solution

64. What do you mean by primary data?

- Watch Video Solution

65. Define the term schedule.

- Watch Video Solution

66. Find out derivative of $\left(3 x^{2}+5 x+78\right)$

- Watch Video Solution

67. Five cards are drawn successively with replacement from a wellshuffled deck of 52 cards. What is the probability that
(i) all the five cards are spades?
(ii) only 3 cards are spades?
(iii) none is a spade?

- Watch Video Solution

68. If $i z^{3}+z^{2}-z+i=0$ then the value of $|z|$ is

- Watch Video Solution

69. What are the merits of arithmetic mean?
70. Write notes on : Relative dispersion and its measures.

- Watch Video Solution

71. If $Y=a+b x, a, b$ be two real constants, then prove that Range $(y)=|b|$, Range (x).

- Watch Video Solution

72. Prove that $\log _{n}(n+1)>\log _{n+1}(n+2)$, for $\mathrm{n}>1$.

- Watch Video Solution

73. Show that for any set of n real values $x_{1}, x_{2}, \ldots \ldots . . . x_{n}$.
$x_{1}^{2}+x_{2}^{2}+\ldots \ldots+x_{n}^{2} \geq \frac{x_{1}+x_{2}+\ldots .+x_{n}}{\sqrt{n}}$
74. State Remainder theorem.

- Watch Video Solution

75. If a, b, c are all positive, prove that $6 a b c \leq b c(b+c)+c a(c+a)+a b(a+b)$

- Watch Video Solution

76. Find the degree two polynomial function $f(x)$ for which it is known that $f(0)=1, f(1)=5, f(2)=11$.

Watch Video Solution

77. If a variable assumes n values a, ar,......... $a^{n-1}(r<1)$ with equal frequencies then verify that $A H=G^{2}$
78. Write a short note on histogram of a frequency distribution.

- Watch Video Solution

79. Write down the merits and demerits of mass questionnaire method.

- Watch Video Solution

80. if $\sin ^{4} x+\sin ^{2} x=1$, then prove that $\cot ^{4} x+\cot ^{2} x=1$.

- Watch Video Solution

81. Two groups of 15 and 22 values have variances 9 and 16 respectively. If the group means differ by 8.2, then find the standard deviation of the combined group of values.
82. Write a general formula expressing central moments in terms of raw moments.

- Watch Video Solution

83. If s and R are respectively the standard deviation and range of set of n values of a variable x , then prove that $\frac{R^{2}}{2 n} \leq s^{2}$.

- Watch Video Solution

84. If \bar{x}_{1} and \bar{x}_{2} are the A.M. of two sets with n_{1} and n_{1} observation respectively, then prove that combined mean for two sets (\bar{x}) lies between \bar{x}_{1} and \bar{x}_{2}.

- Watch Video Solution

85. Derive the formula of median from ogive for a frequency distribution.

- Watch Video Solution

86. Prove that all odd-ordered central moments are zero for a symmetrical distribution.

- Watch Video Solution

87. Derive Lagrange's interpolation formula.

- Watch Video Solution

88. Prove that $\frac{1}{n} \sum_{E_{1}}^{n}\left|x_{i}-A\right|$ attains, minimum when $\mathrm{A}=$ Median.

- Watch Video Solution

89. If the mean and variance of one set of values be \bar{x}_{1} and s_{1}^{2} and those of another set be \bar{x}_{2} and s_{2}^{2} respectively and each set has values 2 , then prove that the variance $\left(s^{2}\right)$ of the combined set of values is given by $4 s^{2}=2\left(s_{1}^{2}+s_{2}^{2}\right)+d^{2}$ where $d=\left(\bar{x}_{1}-\bar{x}_{2}\right)$.

- Watch Video Solution

90. In a frequency table, the upper boundary of each class-interval has a constant ratio to the lower boundary. Show that the geometric mean (G) may be expressed as $\log G=A+\frac{k}{n} \sum_{i=1}^{r} f_{i}(i-1)$.

- Watch Video Solution

