©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - R G PUBLICATION

CHEMICAL KINETICS

Exercise

1. The rate constant of a reaction is
$3 \times 10^{2} \min ^{-1}$. What is the order of the reaction?
2. The concentration of a solution having concentration 0.24 M is reduced to 0.12 M in 10 hours and 0.06 M in 20 hours. What is the rate of the reaction?

- Watch Video Solution

3. Define order of a reaction.

D Watch Video Solution
4. For the reaction $R \rightarrow P$ write the differential rate law.

D Watch Video Solution

5. Define activation energy of a reaction.

- Watch Video Solution

6. The rate of a reaction is equal to rate constant of the reaction. Mention the order of the reaction.

- Watch Video Solution

7. Give the defination of collision frequency.

- Watch Video Solution

8. Give an example of pseudo first order reaction.

- Watch Video Solution

9. Find out half-life time of first order reaction with rate constant $k=2.31 \times 10^{-14} s^{-1}$.

- Watch Video Solution

10. The rate constant for a chemical reaction
at a given temperature is
$2.3 \times 10^{-5} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$. What is the order of
the reaction

- Watch Video Solution

11. A reaction, $S O_{2} C l_{2} \rightarrow S O_{2}+C l_{2}$ is first order reaction with half life period $3.15 \times 10^{4} s$ at $320^{\circ} C$. What percentage of
$\mathrm{SO}_{2} \mathrm{Cl}_{2}$ would be decomposed on heating at $320^{\circ} C$ for 90 minutes?

- Watch Video Solution

12. For the
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$, the rate of formation of NO is $3.6 \times 10^{-3} \mathrm{molL} L^{-1} \mathrm{~s}^{-1}$.

Calculate the rate of disappearance of NH_{3} and the rate of formation of $\mathrm{H}_{2} \mathrm{O}$.
13. A certain reaction is 50% complete in 20 minutes at 300 K and the same reaction is again 50% complete in 5 minutes at 350 K . Calculate the activation energy if the reaction is of first order.

- Watch Video Solution

14. The rate constant of a reaction at 500 K and

700K are $0.01 s^{-1}$ and $0.07 s^{-1}$ respectively.
Calculate the value of activation energy for the reaction ${ }^{(}\left(\mathrm{R}=8.314 \mathrm{JK}^{\wedge}-1 \mathrm{~mol}^{\wedge}-1\right)$.
15. For a chemical reaction variation in concentraction, $\ln [R]$ vs. time (min) plot is shown below:

What is the order of the reaction?
16. For a chemical reaction variation in concentraction, $\ln [R]$ vs. time (min) plot is
shown below :

What is the unit of rate constant K, for the

reaction?

D Watch Video Solution
17. For a chemical reaction variation in concentraction, $\ln [R]$ vs. time (\min) plot is shown below :

If initial concentration of the reactant is half of the original concentration, how will $t_{1 / 2}$ change?

- Watch Video Solution

18. For a chemical reaction variation in concentraction, $\ln [R]$ vs. time (min) plot is shown below :

Draw the plot of $\frac{\log [R]^{\circ}}{R}$ vs. time(s).

- Watch Video Solution

19. For the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ the following
results have been obtained.

SL.NO.	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \mathrm{mol} \mathrm{L}^{-1}$	Rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$, moll $^{-1} \min ^{-1}$
1	1.13×10^{-2}	34×10^{-5}
2	$.0 .84 \times 10^{-2}$	25×10^{-5}
3.	0.62×10^{-2}	18×10^{-5}

Calculate order of the reaction

D Watch Video Solution

20. For the reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \text { the following }
$$

results have been obtained.

SL.NO.	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \mathrm{molL}^{-1}$	Rate of disapepearance of $\mathrm{N}_{2} \mathrm{O}_{s}, \mathrm{molL}^{-1} \mathrm{~min}^{-1}$
1	1.13×10^{-2}	$.34 \times 10^{-5}$
2	$.0 .84 \times 10^{-2}$	25×10^{-5}
3.	0.62×10^{-2}	18×10^{-5}

Write rate law

D Watch Video Solution

21. For the reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ the following
results have been obtained.

SL.NO.	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \mathrm{molL}^{-1}$	Rate of disapepearance of $\mathrm{N}_{2} \mathrm{O}_{s}, \mathrm{molL}^{-1} \mathrm{~min}^{-1}$
1	1.13×10^{-2}	$.34 \times 10^{-5}$
2	$.0 .84 \times 10^{-2}$	25×10^{-5}
3.	0.62×10^{-2}	18×10^{-5}

Calculate rate constant of the reaction.
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

- Watch Video Solution

22. Show that for a first order reaction, the
half life is independed of the initial concentration of reactant.
23. Identify the reaction order from each of the following rate constants.
$k=1.4 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{Ls}^{-1}$

D Watch Video Solution

24. Identify the reaction order from each of
the following rate constants.
$k=2.3 \times 10^{-4} s^{-1}$
25. The conversion of molecule A to B follows
second order kinetics. If concentration of A is
increased four times how will the rate of formation of B be affected?

D Watch Video Solution

26. Give the defination of collision frequency.

D Watch Video Solution

27. For the reaction $R \rightarrow P$ the rate becomes

4 times faster when the concentration of the reaction R is doubled at a given temperature. What is the order of the reaction?

- Watch Video Solution

28. Show that integrated rate law for the first order reaction $R \rightarrow P$ is -
$k=\frac{2.303}{t} \frac{\log [R]_{0}}{R}$
29. A first order reaction takes 40 minutes for 20\% decomposition. Calculate its half life period,

D Watch Video Solution

30. A reaction is second order with respect to
a reactant. How is the rate of reaction affected
if the concentration of the reactant is reduced to half?
31. Show that time required for completion $\frac{3}{4}$ th of a first order reaction is twice the time required for completion of $\frac{1}{2}$ of the reaction.

- Watch Video Solution

32. For a reaction $2 A \rightarrow 4 B+C$, the concentration of B is increased by 5.0×10^{-3} $\operatorname{molL}^{\wedge}(-1)^{\wedge}$ in 10 seconds. Calculate the rate of disappearance of A.

Watch Video Solution

33. Show that slope of the plot of Ink against
$\frac{1}{T}$ is $-\frac{E a}{R}$. Give the graphical representation of the plot.

- Watch Video Solution

34. Starting from the intergrated rate law of a zeroth order reaction $R \rightarrow P$ show that half
life time of the reaction is directly
proportional to the initial molar concentration of the reactant.

D Watch Video Solution

35. Starting from the intergrated rate law of a zeroth order reaction $R \rightarrow P$ show that half
life time of the reaction is directly proportional to the initial molar concentration of the reactant.

D Watch Video Solution

36. Show that in a 1st reaction, time required for completion of 99.9% is 10 times of half life time of the reaction.

D Watch Video Solution

37. The rate of a chemical reaction.
A. Increases as the reaction proceeds.
B. Decreases as the reaction proceeds.
C. May increase or decrease during the reaction
D. Remains constant as the reaction proceeds.

Answer:

D Watch Video Solution
38. The correct order indicated against the rate of raction $A+B \xrightarrow{K}$ is

$$
\begin{aligned}
& \text { A. }\left(d[A] \frac{B}{t}=K[A]\right. \\
& \text { B. } \frac{-d[B]}{d t}=K[A][B] \\
& \text { с. }\left(-d \frac{A}{d t}=K[A][B]\right. \\
& \text { D. } \frac{+d[A]}{d t}=K[A]
\end{aligned}
$$

Answer:

- Watch Video Solution

39. For a gaseous reaction the unit of rate for a first order reaction is given by
A. $m o l L^{-1}$
B. $\mathrm{Lmol}^{-1} S$
C. $a t m S^{-1}$
D. $m o l L^{-1} \min ^{-1}$

Answer:

D Watch Video Solution

40. In a reaction $2 X+Y \rightarrow X_{2} Y$. The reactant X will disappear at
A. half the rate at that Y will decrease.
B. The same rate at that Y will decrease.
C. The same rate at that $X_{2} Y$ will form.
D. Twice the rate at that Y wil decrease.

Answer:

D Watch Video Solution
41. Which of the following is false?
A. Rate law is the expression in which the
rate is given in terms oif molar concentration of reactants raised to some power equal to the stiochiometric coefficients of the reactants.

B. A zero order reaction is one whose rate

is independent of the concentration of
the reactant.
C. Reaction rates generally decrease when
the concentration or reactants decrease

D. None of the above.

Answer:

D Watch Video Solution

42. For a zero order reaction.
A. The reaction rate is doubled when the initial concentration is doubled.

B. The time for half change is half the time

taken for completion of the reaction.
C. The time for half change is dependent of the initial concentration.
D. The time for completion of the reaction
is independent of the initial
concentration.

Answer:

- Watch Video Solution

43. Order of a complex reaction is determined from.

D Watch Video Solution

44. The rate constat (k) for a particular reaction is $2.3 \times 10^{-5} \mathrm{Lmol}^{-1} \mathrm{~S}^{-1}$. The order of the reaction is
A. 1st
B. 2nd
C. zero
D. $\frac{1}{2}$

Answer:

D Watch Video Solution

45. The one which is unimolecular reaction is
A. $2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
B. $N_{2} O_{5} \rightarrow N_{2} O_{4}+\frac{1}{2} O_{2}$
C. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$

D. $P C l_{2}+C l_{2} \rightarrow P C l_{5}$

Answer:

D Watch Video Solution

46. The hydrolusis of ethylacetate

$\mathrm{CH}_{3} \mathrm{COOEt}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{EtOH}$
A. 1st order
B. 2nd order
C. 3rd order

D. zero order

Answer:

- Watch Video Solution

47. Give one exampe of first order reaction.

$$
\begin{aligned}
& \text { A. } 2 \mathrm{NH}_{3}(g) \xrightarrow[P t]{\Delta} N_{2}(g)+3 H_{2}(g) \\
& \text { B. }-88^{226} R a \rightarrow{ }_{2}^{4} H e+{ }_{86}^{222} R n \\
& \text { C. } C H C l_{3}+C l_{2} \rightarrow \mathbb{C} l_{4}+H C l
\end{aligned}
$$

D. None of the above.

Answer:

- Watch Video Solution

48. What will be the order of the reaction if doubling of the concentration of the reactant increases of the rate by a factor of 4 and tripling the concentration of the reactant by a factor of 9.
A. 1st order
B. zero order

C. 2nd order

D. 3rd order

Answer:

D Watch Video Solution

49. The half life of a first order reaction is

10 min . If initial amount is $0.80 \mathrm{~mol} /$ lit and
concentration at some instant is $0.01 \mathrm{~mol} /$ lit
then then t -

A. 10 min

B. 30 min

C. 20 min
D. 40 min

Answer:

D Watch Video Solution

50. The minimum energy necessary to permit a reaction is
A. internal energy
B. threshold energy
C. activation energy
D. enthalpy

Answer:

D Watch Video Solution
51. For an endothermic reaction, where ΔH represents the enthalpy of the electro in
$k J$ / mol the minimum value for the energy of activation will be-
A. less then ΔH
B. zero
C. more than ΔH
D. equila to ΔH

Answer:
(Watch Video Solution
52. The rate constant, the activation energy
and the Arrhenius parameter of a chemical
reaction at $\quad 25^{\circ} \mathrm{C}$ are
$3 \times 10^{-4} s^{-1}, 104.4 \mathrm{kJmol}^{-1}$ and
$6 \times 10^{-14} s^{-1}$ respectively. The value of the rate constant at $T \rightarrow \propto$ is
A. $2 \times 10^{18} s^{-1}$
B. $6 \times 10^{14} s^{-1}$
C. infinity
D. $3.6 \times 10^{30} s^{-1}$

Answer:

D Watch Video Solution

53. A catalyst
A. Increases the average kinetic energy of reaction moelcules
B. Decreases the activation energy
C. Alters the reaction mechanism

D. Decreases the frequency of collisions of

 reacting species.
Answer:

D Watch Video Solution

54. Which one of the following is true in case of catalyst?
A. It catalyses non-spontaneous reaction
B. It disturbs equilibrium by changing equilibrium constant.
C. It does not alter Gibbs free energy
D. A small amount of the catalyst can not
catalyse a large amount of reactants.

Answer:

D Watch Video Solution

55. Which of the following factors is helpful for effective collision between reactant molecules?
A. Activation energy and an average energy.
B. Threshold energy and proper
orientation of the molecules for
collision.
C. Heat energy and sufficient collision
frequency.

D. Catalyst and proper orientation of the

 reacting molecules
Answer:

- Watch Video Solution

56. What is the rate of a reaction?

D Watch Video Solution

57. Differentiat between instantaneous rate

 and average rate of a reaction .
- Watch Video Solution

58. For a reaction the rate of given by
$-\frac{1}{2} \frac{\Delta[H I]}{\Delta t}=\frac{\Delta\left[H_{2}\right]}{\Delta t}=\frac{I_{2}}{\Delta t}$. Write the reaction.

D Watch Video Solution

59. Describe the rate law.

D Watch Video Solution

60. Give an example of Bimolecular reaction.

D Watch Video Solution

61. Show the rate of the following reaction in
terms of partial pressure of the reactants and
the products.
$2 A(g) \rightarrow 2 B(g)+C(g)$

D Watch Video Solution
62. In a reaction $2 A \rightarrow P$ the Conc of A decreases from $0.5 \mathrm{molL}^{-1}$ to $0.4 \mathrm{molL}^{-1}$ in 10 sec . Calculate the rate of the reaction.

D Watch Video Solution
63. What is zero order reaction?
64. Give an example each from first order and zero order reaction.

- Watch Video Solution

65. For the following radioactive reaction $-88^{226} \mathrm{Ra} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{86}^{222} \mathrm{Rn}$ write the rate of the reaction.

- Watch Video Solution

66. Write the integrated rate law and half life
for a zero order reaction.

(Watch Video Solution

67. Give an example of pseudo first order reaction.
68. A plot of $\frac{\log \left[R_{0}\right]}{R}$ vs time is a straight line passing through origin point. What is order of the reaction?

- Watch Video Solution

69. Write the Arrhenius equation regarding
the dependence of rate constant with temperature of a reaction.

D Watch Video Solution

70. The graph of logK vs X is linear with a slop
$=-\frac{E}{2.303 R}$. What is X ?

- Watch Video Solution

71. What is activated complex?

- Watch Video Solution

72. A catalyst provides ___of a reaction of
lower
73. What is threshold energy.

- Watch Video Solution

74. Rate of a reaction is given by $Z_{A B} e^{E a / R T}$. What does $e^{-E a / R T}$ represent?

- Watch Video Solution

75. What will be the effect of temperature on rate constant?

D Watch Video Solution

76. If half life period of a first order reaction is
x and $3 / 4$ th life period of the same reaction is
y. How are x and y related to each other?

D Watch Video Solution
77. What is the meaning of an elementary reaction?

D Watch Video Solution
78. Show that the amount of the substance
left after n-half lives in equal to $\frac{A_{0}}{2^{n}}$ where
$A_{0} \rightarrow$ initial concentration of the reactant.

- Watch Video Solution

79. For the reaction $A \rightarrow B$, the concentration of a reactant changes from 0.03 M to 0.02 M in 20 mins. Calculate the average rate of reaction. What is the rate of production of ' B ' during this period?

D Watch Video Solution

80. Write the difference between order and molecularity.
81. What is compex reaction? Give one example

What is the rate determining step of this type of reaction?

D Watch Video Solution

82. Show that for a zero order reaction
$K t=a_{0}-a_{1}$ where $K \rightarrow$ rate constant
$a_{0} \rightarrow$ initial concentration of reactant
$a_{1} \rightarrow$ Concentration of the reactant at time

- Watch Video Solution

83. From first order kinetics. We can write
$[R]=[R]_{0} e^{-k t}$. Draw the graph the $[\mathrm{R}]$ against 't'. Why [R] can not be zero? How instantaneous rate is determined form the plot?

D Watch Video Solution

84. The following data were obtained for
thermal decomposition of $N_{2} O_{5}(g)$ at constant volume.
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Calculate the rate constant.

D Watch Video Solution

85. Show that for a first order reaction, the
half life is independed of the initial concentration of reactant.

D Watch Video Solution

86. A first order reaction has a rate constant
$1.15 \times 10^{-3} s^{-1}$ how long will 5 g of this reactant take to reduce to 3 g ?
87. Mention two factors that effect the rate of a chemical reaction.

- Watch Video Solution

88. In a pseudo first order hydrolysis of ester
in water the following results are obtained.

$\mathrm{t} / \mathrm{sec}$	0	30	60	90
$[$ ester $] / \mathrm{molL}^{-1}$	065	0.31	0.17	0,085

Calculate the average rate of reaction between
the time interval 30 to 60 seconds.

D Watch Video Solution
89. In a pseudo first order hydrolysis of ester in water the following results are obtained.

$\mathrm{t} / \mathrm{sec}$	0	30	60	90
$[\mathrm{ester}] / \mathrm{molL}^{-1}$	065	0.31	0.17	0.085

Calculate the pseudo first order rate constant for the hydrolysis.

D Watch Video Solution

90. The date below are for the reaction of NO
and $C l_{2}$ to form NOCl at 295 K .

Sl No.	Conc of $\mathrm{Cl}_{2}(\mathrm{M})$ (भाजতा)	$\begin{gathered} \text { Conc of } \\ \text { "NO (M) } \\ \text { (silivẹ) } \end{gathered}$	Initial rate (molL- ${ }^{-1} \mathrm{~s}^{-1}$) (প্রাবख্ভিক.হাব)
(1	0.05	0.05	1.0×10^{-3}
(ii)	0.15	0.05	3.0×10^{-3}
(iii)	0.05	0.15	9.0×10^{-3}

What is the order w.r.t. NO of $C l_{2}$ in the reaction.

- Watch Video Solution

91. The date below are for the reaction of NO
and $C l_{2}$ to form NOCl at 295 K .

Sl No.	Conc of $\mathrm{Cl}_{2}(\mathrm{M})$ (भाजতा)	$\begin{gathered} \text { Conc of } \\ \text { "NO (M) } \\ \text { (silivẹ) } \end{gathered}$	Initial rate (molL- ${ }^{-1} \mathrm{~s}^{-1}$) (প্রাবख্ভিক.হাব)
(1	0.05	0.05	1.0×10^{-3}
(ii)	0.15	0.05	3.0×10^{-3}
(iii)	0.05	0.15	9.0×10^{-3}

Write the rate expression?

D Watch Video Solution
92. The date below are for the reaction of NO
and $C l_{2}$ to form NOCl at 295 K .

Sl No.	Conc of $\mathrm{Cl}_{2}(\mathrm{M})$ (भাত়তা)		Initial rate ($\mathrm{molL}^{-1} \mathrm{~s}^{-1}$) (প্রাবস্ভিক. शাব)
(i)	0.05	0.05	1.0×10^{-3}
(ii)	0.15	0.05	3.0×10^{-3}
(iii)	0.05	0.15	9.0×10^{-3}

Calculate the rate constant.

D Watch Video Solution

93. The date below are for the reaction of NO and Cl_{2} to form NOCl at 295 K .

Sl No.	Conc of $\mathrm{Cl}_{2}(\mathrm{M})$ (भाज़তা)	Conc of NO (M) (भाप़ण़)	Initial rate ($\mathrm{molL}^{-1} \mathrm{~s}^{-1}$) (धाबत्डिक.হাব)
(i)	0.05	0.05	1.0×10^{-3}
(ii)	0.15	0.05	3.0×10^{-3}
(iii)	0.05	0.15	9.0×10^{-3}

Determine the reaction rate when the concentrations of $C l_{2}$ and NO are 0.2 M and 0.4 M respectively?

D Watch Video Solution

94. During nuclear explosion one of the products is ${ }^{\wedge} 90 S r$ with half life of 28.1 years.

If $1 \mu g$ of ${ }^{\wedge} 90 S r$ was absorbed in the bones of
a newly born baby instead of calcium how much of it will remain after 10 years and 60
years if it is lost metabolically?

Watch Video Solution

95. Show that for a first order reaction the time required for 75% completion is twice the time required for the completion of 50% of reaction.

- Watch Video Solution

96. The experimental data for decomposition
of $\mathrm{N}_{2} \mathrm{O}_{5}$ in a gas phase at 318 K are given below
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

$\mathrm{t} / \mathrm{sec}$ $10^{2} \times\left(\mathrm{N}_{2} \mathrm{O}_{3}\right]$ molL^{-1}	0 1.63	400	1.36	1.14	0.93
$\mathrm{t} / \mathrm{sec}$ $10^{2} \times\left(\mathrm{N}_{2} \mathrm{O}_{3}\right]$ molL^{-1}	2000	0.64	2400	2800	3200

What is the rate law

- Watch Video Solution

97. The experimental data for decomposition
of $N_{2} O_{5}$ in a gas phase at 318 K are given
below
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$

$\mathrm{t} / \mathrm{sec}$ $10^{2} \times\left(\mathrm{N}_{2} \mathrm{O}_{5}\right]$ molL 1	1.63	1.36	1.14	0.93	0.78
$\mathrm{t} / \mathrm{sec}$ $10^{2} \times\left(\mathrm{N}_{2} \mathrm{O}_{5}\right]$ molL^{-1}	0.64	0000	2400	2800	3200

Calculate the rate constant (K)

D Watch Video Solution

98. The experimental data for decomposition
of $N_{2} O_{5}$ in a gas phase at 318 K are given below

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

Calculate the half-life period from K

D Watch Video Solution

99. The decomposition of NH_{3} on plantinum
surface is a zero order reaction. What are the rates of productions of N_{2} and H_{2} if

$$
K=2.5 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{Ls}^{-1} ?
$$

100. The half-life for radioactive decay of C-14
is 57830 year. An archaeological artifact containing wood had only 80% of the C-14
found in a living tree. Estimating the age of the sample.

D Watch Video Solution

101. A zero order reaction is 50% complete in

10 mins. What percentage would be completed
at the end of 25 mins? In how many mins would the concentration be reduced to zero?

D Watch Video Solution

102. Discuss the effect of temperature on reaction rate.

D Watch Video Solution

103. An endothermnic reaction $A \rightarrow B$ has an
activation energy $15 k J / m o l$ and energy of
reaction is $5 k J / m o l$. What is the activation energy for backward reaction $B \rightarrow A$. Draw the required graph to describe the above energies.

- Watch Video Solution

104. The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} s^{-1}$ at 546 K .

If the energy of activation is $179.9 \mathrm{~kJ} / \mathrm{mol}$
what will be the value of pre-exponantial
factor?

Watch Video Solution

105. The decomposition of hydrocarbon follows the equation $k=\left(4.5 \times 10^{11} s^{-1}\right) e^{-28000 K / T}$ Calculate E_{a}.

- Watch Video Solution

106. What are the functions of catalyst in a reaction?
107. Discuss the collision theory of reaction rate.

D Watch Video Solution

108. The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K . If the value of A is $4 \times 10^{10} s^{-1}$. Calculate k at 318 K and E_{a}.
109. The activation energy of a certain uncatalysed reaction at 300 K is $76 \mathrm{kJmol}^{-1}$.

The activation energy is lowered to
$57 \mathrm{kJmol}^{-1}$ by the use of a catalyst. By what
factor is the rate of the catalysed reaction increased?

- Watch Video Solution

110. Rate constant K for a first order reaction
has been found to be $2.54 \times 10^{-3} \sec ^{-1}$

Calculate its $3 / 4$ the life $(\log 4=0.6020)$

D Watch Video Solution

111. A first order gas phase reaction
$A_{2} B_{2}(g) \rightarrow 2 A(g)+2 B(g) \quad$ at the
temperature $400^{\circ} C$ has the rate constant
$k=2.0 \times 10^{-4} \mathrm{sec}^{-1}$. What percentage of
$A_{2} B_{2}$ is decomposed on heating for 900 secs
(antilog 0.0781=1.197) ${ }^{\text { }}$

D Watch Video Solution

112. In a first order reaction, the concentration
of the reactant is reduced from $0.6 \mathrm{moll}^{-1}$ to
$0.2 \mathrm{moll}^{-1}$ in 5 minutes. Calculate the rate constant of the reaction.

- Watch Video Solution

113. The half life for the first order reaction is
$5 \times 10^{4} \mathrm{sec}$. What percentage of the initial reactant will react in 2 hrs .
114. In Arrhenius equation

What does the term $e^{-E / R T}$ signify?

D Watch Video Solution
115. In Arrhenius equation

Can activation energy E for a reaction be zero?

- Watch Video Solution

116. The rate of formation of a dimer in a second order dimerisation reaction is $9.1 \times 10^{-6} \mathrm{molL}^{-1} S^{-1} \quad$ at $\quad 0.01 \mathrm{molL}^{-1}$ monomer concentration. Calculate the rate constant for the reaction.

D Watch Video Solution

117. The following reaction takes place in one step.
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 \mathrm{NO}_{2}(g)$

How will the rate of the above reaction change
if the volume of the reaction vessel is diminished to one third of its original volume?

Willthere be any change in the order of the reaction with the reduced volume?

D Watch Video Solution

118. A certain reaction is 50% complete in 20 minutes at 300 K and the same reaction is again 50% complete in 5 minutes at 350 K .

Calculate the activation energy if the reaction is of first order.

D Watch Video Solution

119. A substance with intitial concentration 'a'
follows zero order kinetics. In how much time, will the reaction go to completion?

D Watch Video Solution
120. The gas phase decomposition of acetaldehyde,
$\mathrm{CH}_{3} \mathrm{CHO}(g) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}(g)$ at 680 K is
observed to followed the rate expression: Rate $-d \frac{\mathrm{CH}_{3} \mathrm{CHO}}{d t}=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{\frac{3}{2}}$ IF the rate
of decomposition is followed by monitoring
the pantial pressure of actetaldehyde, we can express the rate as.
$d P_{\mathrm{CH}_{3} \mathrm{CH} \frac{\emptyset}{d t}}=k\left[P_{\mathrm{CH}_{3} \mathrm{CHO}}^{\frac{3}{2}}\right.$
If the pressure is measured in atomospheres and the time in minutes than

What are the units of the rate of reaction?

- Watch Video Solution

121. The gas phase decomposition of acetaldehyde,
$\mathrm{CH}_{3} \mathrm{CHO}(g) \rightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}(g)$ at 680 K is observed to followed the rate expression: Rate $-d\left[\mathrm{CH}_{3} \mathrm{CHO}\right] / d t=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{\frac{3}{2}}$ IF the rate of decomposition is followed by monitoring the pantial pressure of actetaldehyde, we can express the rate as.
$-d P_{\mathrm{CH}_{3} \mathrm{CH} \frac{0}{d t}}=k\left[P_{\mathrm{CH}_{3} \mathrm{CHO}}^{\frac{3}{2}}\right.$
If the pressure is measured in atomospheres
and the time in minutes than

What are the units of the rate constantK?

D Watch Video Solution

122. Higher the activation energy of a reaction slower is the rate of the reaction Explain.

- Watch Video Solution

123. The activation energy of a reaction ${ }^{`} 2 \mathrm{H}$
$I_{-}(\mathrm{g})$ rarrH_2 + $\mathrm{I}_{-}(2(\mathrm{~g}))$ is $209.5 \mathrm{~kJ} \mathrm{~mol}^{\wedge}-1$ at 581 K .

Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?

D Watch Video Solution

124. Hydrogen peroxide $\mathrm{H}_{2} \mathrm{O}_{2}(a q)$ decomposes to $H_{2} O(l)$ and $O_{2}(g)$ in a reaction that is first order in $\mathrm{H}_{2} \mathrm{O}_{2}$ and has a rate constant $k=1.06 \times 10^{-3} \mathrm{~min}^{-1}$

How long will it take for 15% of a sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ to decompose ?

Watch Video Solution

125. Hydrogen peroxide $\mathrm{H}_{2} \mathrm{O}_{2}(a q)$ decomposes to $H_{2} O(l)$ and $O_{2}(g)$ in a reaction that is first order in $\mathrm{H}_{2} \mathrm{O}_{2}$ and has a rate constant $k=1.06 \times 10^{-3} \mathrm{~min}^{-1}$

How long will it take for 85% of the sample to decompose?
(Watch Video Solution
126. Nitrogen pentoxide decomposes
according to equation
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
The first order reaction was allowed to proceed at $40^{\circ} \mathrm{C}$ and the data below were collected.
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](\mathrm{M})$
0.400
0.289
0.209
0.151
0.109

Time(min)
0.00
20.0
*40.0.
60.0
80.0

Calculate the rate constant, include units with
you answer.

D Watch Video Solution

127. Nitrogen pentoxide decomposes according to equation
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
The first order reaction was allowed to proceed at $40^{\circ} \mathrm{C}$ and the data below were collected .

$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](\mathrm{M})$	Time (min)
0.400	0.00
0.289	20.0
0.209	40.0.
0.151	60.0
0.109	80.0

What will be the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 100 mins.?

- Watch Video Solution

128. Nitrogen pentoxide decomposes
according to equation
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

The first order reaction was allowed to proceed at $40^{\circ} \mathrm{C}$ and the data below were collected.

$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](\mathrm{M})$
0.400
0.289
0.209
0.151
0.109

Time(min)
0.00
20.0
'40.0.
60.0
80.0

Calculate the initial rate of reaction.

D Watch Video Solution
129. The rate constant for the first order decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is given by the following equation:
$\log k=14.34-1.25 \times 10^{4} K / T$ Calculate E_{a}
for this reaction and at what temperature will
its half-period by 256 minutes?

D Watch Video Solution

