©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - R G PUBLICATION

MOVING CHARGES AND MAGNETISM

Exercise

1. Write down the Biot-Savart's Law in vector
form.
2. Write the expresion for Lorentz force acting on a charged particle.

D Watch Video Solution

3. Why is the Cyclotron not used to accelerate electrons?
4. Define mobility of a charge carrier.

D Watch Video Solution

5. What is Current Sensitivity of a galvanometer?

- Watch Video Solution

6. The wire shown in the figure carries a
current of 10A. What is the magnitude of
magnetic field induction at the centre O ? Give
the radius of the bend coil is 3 cm .

- Watch Video Solution

7. An α particle is moving in a magnetic field of
$(3 \hat{i}+2 \hat{j})$ tesla with in velocity of
$5 \times 10^{5} \hat{i} \mathrm{~ms}^{-1}$. What will be the magnetic force acting on the particle?

- Watch Video Solution

8. Find an expression for the magnetic field at points on the axis of a circular current loop.

- Watch Video Solution

9. A rectangular coil carrying current is placed
in a uniform magnetic field in such a way that
normal to the coil makes an angle θ with the direction of magnetic flux density. Find the magnitude of torque acting on the coil Define magnetic moment of a current loop.

- Watch Video Solution

10. A charge particle enters a magnetic field with velocity v in a direction perpendicular to
the field. Find the expression for the redius of the circular path of the particle.

D Watch Video Solution

11. Show that the angular frequency of a charged particle moving in a circular path in a magnetic field is independent of its velocity.

- Watch Video Solution

12. Find the following expression for the magnetic moment of an electron moving in a circular path
$\mu_{c}=\frac{c}{2 m_{c}} 1$
Wherel is the angular momentum of the electron about the nucleus, e and m_{c} are its charge and mass.

- Watch Video Solution

13. Using Ampere's circuital law, find the magnetic flux density at the centre of a long solenoid carrying current.

D Watch Video Solution

14. Write the working of a moving coil galvenometer.

D Watch Video Solution

15. A coil of area A, number of turns N and resistance R is rotating in a radial magnetic field B with an angular speed w. What is the maximum power consumed by the coil?

D Watch Video Solution

16. In an orbit of radius R, an electron is moving round a proton with unifrom circular velocity. Derive the guyromagnetic ratio of
electron of Charge $(-\mathrm{e})$ and mass $\left(m_{e}\right)$. What is Bohr magneton?

D Watch Video Solution

17. Find the magnitude and direction of the torque acting on the square loop as shown in
the diagram where $B=1.5 \mathrm{~T}$ along positive Z -
axis.

(Watch Video Solution
18. A uniform magnetic field of $2 T$ is produced
in a Cylinderical of free space having radius 5
cm . A conductor carrying a current 500 mA passes through the region intersecting the axis normally. What is the magnitude of the force acitng on the conductor?

D Watch Video Solution

19. A conductor of mass m and length I is placed on a table along east-west direction.

Suddenly a certain amount of charge is passed
throughit and it is found to jump to a height
h. What was the amount of charge passed?

The i horizontal magnetic induction of earth is
B. Acceleration due to gravity is g.

D Watch Video Solution

20. Two parallel Co-axial Coils of equal radius R
and- numbers of turn N carrying equal
currents I in same direction.are separated by a
distance | R. Show that the magnetic field intensity B on the axis around the mid point between the coils is uniform over a very small
distance as compared to R and is given by-
$B=\left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{\mu_{0} I N}{R}$

- Watch Video Solution

21. There exists a non uniform magnetci fiedl
in free space. A charged particle of mass m and velocity v enters the field and comes out after a certain time. Comment with reason about the Kinetic energy of the particle after coming out of the field.
22. Derive the expression for the magnetic force acting on a current carrying straight conductor placed in a uniform magnetic field and express it in vector form.

- Watch Video Solution

In the above diagram, a particle of mass"m" and charge(-q) initially moving along X -axis with velocity " v ". The length of the plave system is "L" and uniform electric filed between the plates is "E". What is the vertical deflext of the particle at the far edge of the plate?

D Watch Video Solution

24. A charged particle of mass m and charge q
is projected with velocity ν making in angle θ with the direction of a uniform magnetic field of induction B. Find the expression for-

Time period of revolution

D Watch Video Solution

25. A charged particle of mass m and charge q
is projected with velocity ν making in angle θ
with the direction of a uniform magnetic field
of induction B. Find the expression for-

Pitch of the helical path followed by the particle.

D Watch Video Solution

26. Two long straight thin conductors carrying
currents I_{1} and I_{2} respectively along the same direction are placed parallel to each other in air. Derive an expression for the force per unit length acting on any one of the conductors and hence define one ampere current.

Watch Video Solution

27. Explain the concept of electric field. Express electric flux through a surface in terms of electric field cylindrical surface with its axis parallel to uniform electric field is zero,

- Watch Video Solution

28. Using Biot-Savart Law find the magnetic
field intesity due to current carrying loop at an external point on the axis that passes
perpendiculary to the plane of the loop
through the centre. What is the field intensity at the centre?

D Watch Video Solution

29. How can you convert a galvanometer into
an ammeter ? Explain with diagrams.

D Watch Video Solution
30. How can you convert a galvanometer into
a Voltmeter ? Explain with diagrams.

D Watch Video Solution

31. What is the basci principle of a moving coil galvanometer? Derive an expression for current flowing through the galvanometer in terms of steady angular deflection of its coil. Define voltage. Sensitivity of the galvanometer.

What is a convenient way to increase its sensitivity?

- Watch Video Solution

32. What is magnetic field?

D Watch Video Solution

33. What do you understand by Lorentz force.
34. Write the value of earth's magnetic field.

- Watch Video Solution

35. Write the expression for the motion of a charge moving in a magnetic field.

- Watch Video Solution

36. What is the principle employed in a mass
spectrometer?

- Watch Video Solution

37. What is cyclotron frequency?

- Watch Video Solution

38. What is a solenoid and a toroid?

- Watch Video Solution

39. What is the magnetic field at a point placed outside of a long solenoid carrying current I .

- Watch Video Solution

40. A loop of irregular shape carrying, current
is located in an external magnetic field. If the wire is flexible, it change to a circular shape.

Why?
41. What is Bohr magneton?

- Watch Video Solution

42. What is a shunt? What is its use?

- Watch Video Solution

43. What is the value of absolute premeability
of free space?Give its unit?
44. Name the force which is experienced by moving charged particle in the magnetic field.

D Watch Video Solution

45. When a charged particle moves in a magnetci field does the kinetic energy always remains constant?
46. What is the resistance of ideal ammeter.

- Watch Video Solution

47. An ammeter and a milliameter are converted from the same galvanometer. Out of two which current measuring instrument has smaller resistance?

D Watch Video Solution

48. What is cyclotron frequency?

- Watch Video Solution

49. If the distance between two parallel
current carrying wire is doubled. What is the force between them?

- Watch Video Solution

50. Why are pole pices of galvanometer made concave?

D Watch Video Solution
51. Write down the Biot-Savart's Law in vector form.

D Watch Video Solution
52. A circular coil of radius 'r' carrying current I
is equivalent to a magentic dipole. What is the magnetic moment of the di-pole?

- Watch Video Solution

53. What is the direction of magnetic dipole moment?

- Watch Video Solution

54. State Ampere's circuital law.

D Watch Video Solution

55. What is toroid?

D Watch Video Solution
56. How does magnetic induction inside a solenoid change due to a change in number of turns of the solenoid?

- Watch Video Solution

57. What is the ratio of electric and magnetic force between two moving charges.

- Watch Video Solution

58. Write the Oersted's investigation on deflection of a magnetic compass needle when placed nearby a long straight current carrying conductor.
59. Deduce the expression for magnetic force on a current carrying conductor.

- Watch Video Solution

60. What is a cyclotron?

- Watch Video Solution

61. Write the various fields of uses of a cyclotron.

- Watch Video Solution

62. Illustrate the Biot-Savart law.

D Watch Video Solution

63. State Ampere's circuital law.
64. "Parallel currents attracts, and antiparallel currents repel" Discuss.

D Watch Video Solution

65. Write the working of a moving coil galvenometer.

D Watch Video Solution
66. Convert a moving coil galvanometer into a voltmeter.

D Watch Video Solution
67. Convert a moving coil galvanometer into a ammeter.

- Watch Video Solution

68. State Ampere's circuital law.

- Watch Video Solution

69. Explain the main function of electric and magnetic fields in a cyclotron.

- Watch Video Solution

70. What is voltmeter? How galvanometer converted to a voltmeter?

- Watch Video Solution

71. A current of 10A flows through each of two

 parellel long wires. The wies are 5 cm apart.Calculate the force acting per unit length of each wire.

- Watch Video Solution

72. Electron moving at right angle to a uniform magnetic field complete a circular orbit of $10^{-2} \mathrm{~m}$ radius in $10^{-10} \mathrm{~s}$. What is the magnitude of magnetic field.
73. An electron of energy 150 ev describe a circular path in a magnetic field of 1 T . Calculate the radius of circle.

- Watch Video Solution

74. Write the limitation of cyclotron.

D Watch Video Solution

75. What do you understand by Lorentz force.

D Watch Video Solution

76. What is voltmeter? How galvanometer converted to a voltmeter?

- Watch Video Solution

77. Two long parallel wire hanging freely. If
they are connected in a battery series. What
would be the effect of their position.

D Watch Video Solution

78. Two long parallel wire hanging freely. If they are connected in a battery series. What would be the effect of their position.

- Watch Video Solution

79. Explain the action of a shunt.

D
 Watch Video Solution

80. What is the radius of the path of an electron moving at a speed of $10^{7} \mathrm{~m} / \mathrm{s}$ in a magnetic field of $2 \times 10^{-4} \mathrm{~T}$ perpendicular to it? Also find out its frequency and energy.

D Watch Video Solution

81. Find out the operating magnetic field for accelerating protons of a cyclotron, if the cyclotron's oscillator frequency is $1 \times 10^{6} \mathrm{~Hz}$.

Watch Video Solution

82. Find out the operating magnetic field for accelerating protons of a cyclotron, if the cyclotron's oscillator frequency is $1 \times 10^{6} \mathrm{~Hz}$.

- Watch Video Solution

83. What are the similarties / dissimilarities
between Biot-Savart law for magnetic field and
Coulomb's law for electrostataic field.
84. Deduce the expression of Biot-Savart's law of a finite conductor carrying current I.

D Watch Video Solution

85. Find an expression for the magnetic field at
points on the axis of a circular current loop.
86. What is the magnetic field at a point placed outside of a long solenoid carrying current I .

- Watch Video Solution

87. Deduce the expression for torque on a rectangular current loop in a uniform magnetic field.
88. Deduce the expression for the magnetic dipole moment of a revolving electron.

- Watch Video Solution

89. A circular coil of wire consisting of 80
turns, each of radius 50 mm carries a current
of 0.25 A . What is the magnetic field at the centre of the coil?
90. A galvanometer coil has a resistance of
10Ω and the meter shows full scale deflection
for a current of 2.5 mA . How will you convery
the metre into an ammeter of range 0 to 4A.

D Watch Video Solution

91. An electron is moving with a velocity
$(3 \hat{i}+3 \hat{j}) m s^{-1}$ in an electric field
$3 \hat{i}+6 \hat{j}+2 \hat{k}$ and a magnetic field $2 \hat{j}+3 \hat{k}$.
Calculate the magnitude of the force.
92. Write the working principle of cyclotron.

- Watch Video Solution

93. Describe the working principle of solenoid with the help of Amper's circuital law.
94. A square coil of side 10 cm consist of 20
turns and carries a current 10A. The coil is
suspended vertically and normally and makes
angle 30° with horizontal direction of uniform
magnetic field 80T. What is the magnitude of
torque experienced by the coil.

D Watch Video Solution

95. Deduce the expression for torque on a rectangular current loop in a uniform
magnetic field.

- Watch Video Solution

96. A 25Ω galvanometer is shunted by 2.5Ω
wire. What part of total current flows through
the galvanometer?

- Watch Video Solution

97. The deflection in a galvanometer falls from

50 division to 10 division when a shunt of 15Ω
is used. Calculate the galvanometer resistance.

- Watch Video Solution

98. A electron and proton possesing equal momentum and injected to a region at right angle to a uniform magnetic field. Calculate
the ratio of this radius while moving inside the magnetic field.
99. Write the working of a moving coil galvenometer.

D Watch Video Solution

100. An oil drop of $10^{-6} \mathrm{~m}$ radius carring a charge 4 times that of an election and remain suspended between two charged parellel plate
.01m apart. Find the potential difference between the plates.
