

MATHS

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER 2

Mathematics Section A

1. The value of
$$an^{-1} \left(\sqrt{2} \sin \frac{3\pi}{4} \right)$$
 is

A.
$$-\frac{\pi}{2}$$

B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: C

3. If $y = x(x-3)^2$ decreases for the values of x given by

A. 1 < x < 3B. x < 0C. x > 0D. $0 < x < rac{3}{2}$

Answer: A

Watch Video Solution

4. At (0,0) ,the curve $y=x^{1\,/\,5}$ has

A. a vertical tangent (parallel to y - axis)

B. a horizontal tangent (parallel to x - axis)

C. an oblique tangent

D. no tangent

Answer: A

Watch Video Solution

5. $f\!:\!R o R\!:\!f(x)=\cos x$ is

A. one - one

B. mony - one

C. onto

D. bijective

Answer: B

6. If
$$f(x)=egin{cases} kig(x^2-2xig), & ext{If} \ x\leq 0 \ 4x+1, & ext{If} \ x>0 \end{bmatrix}$$
 then which one of the

following statement is correct

A. f(x) is continuous at x = 0 for any value of k

B. f (x) is discontinuous at x = 0 for any value of k

C. f(x) is discontinuous at x = 1 for any value of k

D. f (x) is continuous at x = 0 and k = 1

Answer: B

7. Total number of possible matrices of 3 imes3 with each entry - 1

or 2 is

A. 9

B. 36

C. 81

D. 512

Answer: A

Watch Video Solution

8. The common region determined by all the linear constraints

of a LPP is called the region

A. bounded

B. unbounded

C. feasible

Answer: C

Watch Video Solution

9. Show that the relation R defined on the set A of all triangles in a plane as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2)$ is an equivalence relation. Consider three right angle triangle T_1 with sides 3, 4, 5; T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?

A. T_1, T_2

B. T_1, T_3

 $C. T_3, T_2$

 $\mathsf{D}.\, T_1,\, T_2,\, T_3$

Answer: B

10. If
$$A = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$ then find the value of $(A+2B)$

Answer: A

11. The slope of the tangent to the curve $y = x + \sin x \cos x$ at

A. 0
B.
$$\frac{1}{2}$$

C. 1

$$\mathsf{D.}-rac{1}{2}$$

Answer: A

12.
$$\sinigl(an^{-1}xigr), |x|\leq 1$$
 is equal to :

A.
$$rac{x}{\sqrt{1-x^2}}$$

B. $rac{1}{\sqrt{1+x^2}}$

C.
$$rac{x}{\sqrt{1-x^2}}$$

D. $rac{x}{\sqrt{1+x^2}}$

Answer: D

Watch Video Solution

13. If A is a 3×3 invertible matrix, then what will be the value of k if det(A-1) = (det A)k.

A. 1

B. 2

C. -1

 $\mathsf{D.}-2$

Answer: C

14. If
$$y + \sin y = \cos x$$
, $then rac{dy}{dx}$ is equal to

A.
$$\frac{\sin x}{1 - \cos y}$$

B.
$$-\frac{\sin x}{1 + \cos y}$$

C.
$$-\frac{\cos x}{1 + \sin y}$$

D.
$$\frac{\cos x}{1 - \sin y}$$

Answer: B

15. The derivative of $\cos^{-1}ig(2x^2-1ig)$ w.r.t. \cos^{-1} is

A.
$$\frac{2}{x}$$

B. 2

C.
$$rac{-1}{2\sqrt{1-x^2}}$$

D. $1-x^2$

Answer: B

16. The maximum value of objective function Z=3x+y under

given feasible region is

A. 2

B. 3

C. 4

D. 5

Answer: B

17. The function $g(x)=x^x$ has a critical point at

A. x = e
B. x = 1
C.
$$x = \frac{1}{e}$$

D. $x = \sqrt{6}$

Answer: C

18. If
$$\begin{bmatrix} 2+x & 3 & 4\\ 1 & -1 & 2\\ x & 1 & -5 \end{bmatrix}$$
 is a singular matrix then x is
A. $-\frac{12}{5}$
B. -7

C.
$$-\frac{8}{13}$$

D. $-\frac{25}{13}$

Answer: D

A. Only BA is defined

B. Only AB is defined

C. Both AB and BA are defined

D. Both AB and BA are not not defined

Answer: C

Answer: C

1. Corner poins of the feasible region determned by the system of linear constrainsts are (0,3), (1,1), and (3,0). Let Z=px+qy. Where p, q < 0 Condition on p and q, so that the minimum f Z occurs at (3,0) and (1,1) is

A. p = q B. $p = \frac{q}{2}$ C. p = 2 q D. p = 3q

Answer: B

2. If $f(X)=2\sin 3x+3\cos 3x$, then at $x=rac{5\pi}{6}$, f(x) is

A. minimum

B. maximum

C. zero

D. neither maximum nor minimum

Answer: D

Watch Video Solution

3. If
$$v = \log(1+x^2)$$
 and $u = x - \tan^{-1}x$ then $\frac{du}{dv}$ is

equal to

A.
$$e^x - y$$

B. $e^{x} - 1$

C. 2/x

D. $x^2 - 1$

Answer: C

4. If
$$\begin{bmatrix} 1 & 2 \\ -2 & -b \end{bmatrix} + \begin{bmatrix} a & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 0 \end{bmatrix}$$
, then $a^2 + b^2$ is equal to

A. 10

B. 12

C. 20

D. 22

Answer: C

5. A relation R on A is as follows

R = { (0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)} for A = {0,1,2,3}. Then

R is

A. Reflexive but not symmetric

B. symmetric and transitive

C. Reflexive symmetric but not transitive

D. Eqquivalence

Answer: D

6. The value of $an^2 (\sec^{-1}2) + \cot^2 (\cos ec^{-1}3)$ is equal to

A. 5

B. 11

C. 13

D. 15

Answer: B

7. Shaded region is represented by

A. $4x-2y\geq 3$ B. $4x-2y\geq -3$ C. $4x-2y\leq 3$

 $\mathsf{D.}\,4x-2y\leq\,-\,3$

Answer: D

8. If matrix P $= \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kP = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$ where k, a

and b are constants, then the values of k, a, b respectively are

A. 6, 4, 9

B. -6, 4, 9

C.6, -4, -9

$$D.-6, -4, -9$$

Answer: D

Watch Video Solution

9. The height 'h' and radius 'r' of a right circular cylinder which is open at the top and has a given surface area, will have the greatest volume if A. 2 h = r

B.h = 4r

C. h = r

D. h = 2 r

Answer: C

10. For a function y = x cos x then
$$\frac{d^2y}{dx^2}$$
 is equal to

A. $-x\cos x - 2\sin x$

 $\mathsf{B.} x \cos x + 2 \sin x$

 $\mathsf{C.}\,x\sin x + \cos x$

 $D. -x \sin x + \cos x$

Answer: A

11. The minor
$$M_{31}$$
 if $\Delta = egin{bmatrix} 1 & a & bc \ 1 & b & ca \ 1 & c & ab \end{bmatrix}$ is

A.
$$-c(a^2-b^2)$$

B. $x(b^2-a^2)$
C. $c(a^2+b^2)$
D. $c(a^2-b^2)$

Answer: D

12. If the area of triangle with vertices (-3,0), (3,0) and (0,k) is 9

sq . units then the value of k is

B. 6

A. 9

C. 3

D.-9

Answer: C

Watch Video Solution

13. If A ={ 1, 2, 3, . . , 10} R : A to A $R = \{(a, b) : |a - b|$ is a multiple of 3} is an equivalence relation, then the equivalence class [1] is

A. {1,4,7}

B. {1,3,6,9}

C. {1,4,7,10}

D. {1,2,3,4}

Answer: C

Watch Video Solution

14. Maximum slope of the curve $y=\ -x^3+3x^2+9x-27$ is

A. 0

B. 12

C. 16

D. 32

Answer: B

15. For the function $f(x) = 2x^3 - 3x^2 - 12x + 4$ which of the

following statement is correct

A. f (x) has one maxima and one minima

B. f (x) has to points of local maximum

C. f (x) has two points of local minimum

D. f(x) has no maximu or minima

Answer: A

16. If $f(X)= egin{cases} ax+b & ext{ if } x\leq 1 \ 2 & ext{ if } x>1 \end{cases}$ is continuous at x = 1,

then the relation between a and b is

A. a + b = 1 B. a = 6 C. a + b = 2

D. a - b = 2

Answer: C

Watch Video Solution

17. If A is 3×3 matrix such that $|\mathsf{A}|$ = 8, then $|\mathsf{3A}|$ equal is

B. 24

C. 64

D. 216

Answer: D

Watch Video Solution

18. The principal value of $an^{-1}\sqrt{3} \div \cos^{-1} igg(-rac{1}{2}igg)$ is

A.
$$\frac{\pi}{12}$$

B. 0

C.
$$\frac{1}{3}$$

D. $\frac{1}{2}$

Answer: D

19. If
$$f'(1)=2 ext{ and } v=f(\log_e x)$$
 , then $\displaystyle rac{dv}{dx}$ is for x = e

A.
$$\frac{2}{e}$$

B. O

- C. e
- D. 1

Answer: A

Mathematics Section C

1. The feasible region of a LPP under the constraints $x-y \leq 1, x+y \geq 3, x \geq 0, y \geq 0$

A. is bounded and lies in first quadrant

B. Is unbounded and lies first quadrant

C. does not exist

D. is not in the first quadrant

Answer: B

B. -1

C. -3

D. 3

Answer: B

3. A music concert is organised in a stadium that has a capacity of 36000 people . With ticket price of Rs. 10 the average attendance has been 24000 . Some financial expert estimated that price of a ticket should be determined by the function $p(x) = 15 - \frac{x}{3000}$, where x is the number of tickets sold Based on the above information, answer the following questions

The value of x for which revenue is maximum, is

A. 25000

B. 22500

C. 21000

D. 20000

Answer: B

D View Text Solution

4.

For

 $f \colon A \to A ext{ and } A = \{1, 2, 3, 4\}, f = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$ is

A. injective only

B. surjective only

C. Bijective

D. Neither injective nor subjective

Answer: C

Watch Video Solution

5. If |A|=3 and
$$A^{-1} = \begin{bmatrix} 3 & -1 \\ \frac{-5}{3} & \frac{2}{3} \end{bmatrix}$$
 then adjA=?

A.
$$\begin{bmatrix} 9 & -5 \\ -3 & 2 \end{bmatrix}$$

B.
$$\begin{bmatrix} 9 & 2 \\ -5 & -3 \end{bmatrix}$$

C.
$$\begin{bmatrix} 9 & -3 \\ 2 & -5 \end{bmatrix}$$

D.
$$\begin{bmatrix} 9 & -3 \\ -5 & 2 \end{bmatrix}$$

Answer: D

6. Harsh made a piggy bank for himself using clay . If the shape of the bank is based on the function f(x)=|x-4|+|x-5| where f(x) represents the height of the bank Based on the above information , answer the following questions :

For x > 6 the value of the function f (x) is

A. 1

 $\mathsf{B.}-1$

C. 2x - 9

D. 2 x + 1

Answer: C

7. Harsh made a piggy bank for himself using clay . If the shape of the bank is based on the function f(x)=|x-4|+|x-5| where f(x) represents the height of the bank

At x = 4. 5 the value of the functions f(x) is

A. 1 B. - 1 C. 0

D. 10

Answer: A

8. Harsh made a piggy bank for himself using clay . If the shape of the bank is based on the function f(x) = |x - 4| + |x - 5| where f(x) represents the height of the bank

The value of f'(x) at x = 4 is :

 $\mathsf{A.}-2$

B. 1

 $\mathsf{C}.-1$

D. Not defined

Answer: D

9. Harsh made a piggy bank for himself using clay . If the shape of the bank is based on the function f(x)=|x-4|+|x-5| where f(x) represents the height of the bank

For $x \in (4,5)$ the value of the functions f (x) is

A. 2x-9

B. 1

 $\mathsf{C}.-1$

D. 2 x + 1

Answer: B

10. Harsh made a piggy bank for himself using clay. If the shape of the bank is based on the function f(x)=|x-4|+|x-5| where f(x) represents the height of the bank Based on the above information , answer the following questions :

The function | x| is

A. continuous everywhere but not differentiable

B. both continuous and differentiable

C. not continuous but differentiable everywhere

D. neither continuous nor differentiable

Answer: A

View Text Solution