びdoubtnut

MATHS

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER 2

Mathematics Section A

1. The value of $\tan ^{-1}\left(\sqrt{2} \sin \frac{3 \pi}{4}\right)$ is
A. $-\frac{\pi}{2}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: C

- Watch Video Solution

2. Evaluate $\left|\begin{array}{ll}\cos 15^{\circ} & \sin 15^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ}\end{array}\right|$
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. 0
D. 1

Answer: C

Watch Video Solution
3. If $y=x(x-3)^{2}$ decreases for the values of x given by
A. $1<x<3$
B. $x<0$
C. $x>0$
D. $0<x<\frac{3}{2}$

Answer: A

D Watch Video Solution

4. At $(0,0)$,the curve $y=x^{1 / 5}$ has
A. a vertical tangent (parallel to y-axis)
B. a horizontal tangent (parallel to x - axis)
C. an oblique tangent
D. no tangent

Answer: A

- Watch Video Solution

5. $f: R \rightarrow R: f(x)=\cos x$ is
A. one - one
B. mony - one
C. onto
D. bijective

Answer: B
6. If $f(x)=\left\{\begin{array}{ll}k\left(x^{2}-2 x\right), & \text { If } x \leq 0 \\ 4 x+1, & \text { If } x>0\end{array}\right.$ then which one of the following statement is correct
A. $f(x)$ is continuous at $x=0$ for any value of k
B. $f(x)$ is discontinuous at $x=0$ for any value of k
C. $f(x)$ is discontinuous at $x=1$ for any value of k
D. $f(x)$ is continuous at $x=0$ and $k=1$

Answer: B

- Watch Video Solution

7. Total number of possible matrices of 3×3 with each entry - 1
A. 9
B. 36
C. 81
D. 512

Answer: A

- Watch Video Solution

8. The common region determined by all the linear constraints of a LPP is called the region
A. bounded
B. unbounded
C. feasible

Answer: C

- Watch Video Solution

9. Show that the relation R defined on the set A of all triangles in a plane as $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right)$ is an equivalence relation. Consider three right angle triangle T_{1} with sides $3,4,5 ; T_{2}$ with sides $5,12,13$ and T_{3} with sides 6 , 8, 10. Which triangles among T_{1}, T_{2} and T_{3} are related?
A. T_{1}, T_{2}
B. T_{1}, T_{3}
C. T_{3}, T_{2}
D. T_{1}, T_{2}, T_{3}

(D) Watch Video Solution

10. If $A=\left[\begin{array}{cc}-2 & 3 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]$ then find the value of
$(A+2 B)$
A. $\left[\begin{array}{cc}-4 & 5 \\ 1 & 6\end{array}\right]$
B. $\left[\begin{array}{cc}-4 & 1 \\ 5 & 6\end{array}\right]$
C. $\left[\begin{array}{cc}-4 & 6 \\ 5 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}5 & 6 \\ 1 & -4\end{array}\right]$

Answer: A
11. The slope of the tangent to the curve $y=x+\sin \mathrm{x} \cos \mathrm{x}$ at
$\mathrm{x}=\frac{\pi}{2}$ is
A. 0
B. $\frac{1}{2}$
C. 1
D. $-\frac{1}{2}$

Answer: A

D Watch Video Solution

12. $\sin \left(\tan ^{-1} x\right),|x| \leq 1$ is equal to :
A. $\frac{x}{\sqrt{1-x^{2}}}$
B. $\frac{1}{\sqrt{1+x^{2}}}$
C. $\frac{x}{\sqrt{1-x^{2}}}$
D. $\frac{x}{\sqrt{1+x^{2}}}$

Answer: D

- Watch Video Solution

13. If A is a 3×3 invertible matrix, then what will be the value of k if $\operatorname{det}(A-1)=(\operatorname{det} A) k$.
A. 1
B. 2
C. -1
D. -2

D Watch Video Solution

14. If $y+\sin y=\cos x$, then $\frac{d y}{d x}$ is equal to
A. $\frac{\sin x}{1-\cos y}$
B. $-\frac{\sin x}{1+\cos y}$
C. $-\frac{\cos x}{1+\sin y}$
D. $\frac{\cos x}{1-\sin y}$

Answer: B

D Watch Video Solution

15. The derivative of $\cos ^{-1}\left(2 x^{2}-1\right)$ w.r.t. $\cos ^{-1}$ is
A. $\frac{2}{x}$
B. 2
C. $\frac{-1}{2 \sqrt{1-x}^{2}}$
D. $1-x^{2}$

Answer: B

- Watch Video Solution

16. The maximum value of objective function $Z=3 x+y$ under given feasible region is

A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

17. The function $g(x)=x^{x}$ has a critical point at
A. $x=e$
B. $x=1$
C. $x=\frac{1}{e}$
D. $x=\sqrt{6}$

Answer: C

D Watch Video Solution

18. If $\left[\begin{array}{lll}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & -5\end{array}\right]$ is a singular matrix then x is
A. $-\frac{12}{5}$
B. -7
C. $-\frac{8}{13}$
D. $-\frac{25}{13}$

Answer: D

- Watch Video Solution

$$
\begin{aligned}
& \text { 19. Which of following is true if } \\
& B=\left[\begin{array}{ccc}
2 & -1 & 3 \\
-4 & 5 & 1
\end{array}\right] \text { and } A=\left[\begin{array}{cc}
2 & 3 \\
4 & -2 \\
1 & 5
\end{array}\right] \text { ? }
\end{aligned}
$$

A. Only BA is defined
B. Only $A B$ is defined
C. Both $A B$ and $B A$ are defined
D. Both $A B$ and $B A$ are not not defined

- Watch Video Solution

20. The maximum value of function defined as
$f(x)=\sin 2 x+5$ is
A. 2
B. 4
C. 6
D. 8

Answer: C

Mathematics Section B

1. Corner poins of the feasible region determned by the system of linear constrainsts are (0,3), (1,1), and (3,0). Let $Z=p x+q y$. Where $p, q<0$ Condition on p and q , so that the minimum f Z occurs at $(3,0)$ and $(1,1)$ is
A. $p=q$
B. $p=\frac{q}{2}$
C. $p=2 q$
D. $p=3 q$

Answer: B

2. If $f(X)=2 \sin 3 x+3 \cos 3 x$, then at $x=\frac{5 \pi}{6}, \mathrm{f}(\mathrm{x})$ is
A. minimum
B. maximum
C. zero
D. neither maximum nor minimum

Answer: D

- Watch Video Solution

3. If $v=\log \left(1+x^{2}\right)$ and $u=x-\tan ^{-1} x$ then,$\frac{d u}{d v}$ is equal to
A. $e^{x}-y$
B. $e^{x}-1$
C. $2 / x$
D. $x^{2}-1$

Answer: C

- Watch Video Solution

4. If $\left[\begin{array}{cc}1 & 2 \\ -2 & -b\end{array}\right]+\left[\begin{array}{ll}a & 4 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 0\end{array}\right]$, then $a^{2}+b^{2}$ is equal to
A. 10
B. 12
C. 20
D. 22
5. A relation R on A is as follows
$R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$ for $A=\{0,1,2,3\}$. Then R is
A. Reflexive but not symmetric
B. symmetric and transitive
C. Reflexive symmetric but not transitive
D. Eqquivalence

Answer: D

6. The value of $\tan ^{2}\left(\sec ^{-1} 2\right)+\cot ^{2}(\operatorname{cosec}-13)$ is equal to
A. 5
B. 11
C. 13
D. 15

Answer: B

7. Shaded region is represented by

A. $4 x-2 y \geq 3$
B. $4 x-2 y \geq-3$
C. $4 x-2 y \leq 3$
D. $4 x-2 y \leq-3$

Answer: D

8. If matrix $\mathrm{P}=\left[\begin{array}{cc}0 & 2 \\ 3 & -4\end{array}\right]$ and $k P=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$ where k , a and b are constants, then the values of k, a, b respectively are
A. $6,4,9$
B. $-6,4,9$
C. $6,-4,-9$
D. $-6,-4,-9$

Answer: D

- Watch Video Solution

9. The height ' h ' and radius ' r ' of a right circular cylinder which is open at the top and has a given surface area, will have the greatest volume if
A. $2 \mathrm{~h}=\mathrm{r}$
B. $h=4 r$
C. $h=r$
D. $h=2 r$

Answer: C

- Watch Video Solution

10. For a function $\mathrm{y}=\mathrm{x} \cos \mathrm{x}$ then $\frac{d^{2} y}{d x^{2}}$ is equal to
A. $-x \cos x-2 \sin x$
B. $x \cos x+2 \sin x$
C. $x \sin x+\cos x$
D. $-x \sin x+\cos x$

- Watch Video Solution

11. The minor M_{31} if $\Delta=\left|\begin{array}{lll}1 & a & b c \\ 1 & b & c a \\ 1 & c & a b\end{array}\right|$ is
A. $-c\left(a^{2}-b^{2}\right)$
B. $x\left(b^{2}-a^{2}\right)$
C. $c\left(a^{2}+b^{2}\right)$
D. $c\left(a^{2}-b^{2}\right)$

Answer: D

D Watch Video Solution
12. If the area of triangle with vertices $(-3,0),(3,0)$ and $(0, k)$ is 9 $s q$. units then the value of k is
A. 9
B. 6
C. 3
D. -9

Answer: C

- Watch Video Solution

13. If $\mathrm{A}=\{1,2,3, \ldots, 10\} \mathrm{R}: \mathrm{A}$ to $\mathrm{A} R=\{(a, b):|a-b|$ is a multiple of 3$\}$ is an equivalence relation, then the equivalence class [1] is
A. $\{1,4,7\}$
B. $\{1,3,6,9\}$
C. $\{1,4,7,10\}$
D. $\{1,2,3,4\}$

Answer: C

- Watch Video Solution

14. Maximum slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is
A. 0
B. 12
C. 16
D. 32

- Watch Video Solution

15. For the function $f(x)=2 x^{3}-3 x^{2}-12 x+4$ which of the following statement is correct
A. $f(x)$ has one maxima and one minima
B. $f(x)$ has to points of local maximum
C. $f(x)$ has two points of local minimum
D. $f(x)$ has no maximu or minima

Answer: A

- Watch Video Solution

16. If $f(X)=\left\{\begin{array}{ll}a x+b & \text { if } x \leq 1 \\ 2 & \text { if } x>1\end{array}\right.$ is continuous at $\mathrm{x}=1$, then the relation between a and b is
A. $a+b=1$
B. $a=6$
C. $a+b=2$
D. $a-b=2$

Answer: C

- Watch Video Solution

17. If A is 3×3 matrix such that $|A|=8$, then $|3 A|$ equal is
A. 8
B. 24
C. 64
D. 216

Answer: D

- Watch Video Solution

18. The principal value of $\tan ^{-1} \sqrt{3} \div \cos ^{-1}\left(-\frac{1}{2}\right)$ is
A. $\frac{\pi}{12}$
B. 0
C. $\frac{1}{3}$
D. $\frac{1}{2}$

- Watch Video Solution

19. If $f^{\prime}(1)=2$ and $v=f\left(\log _{e} x\right)$, then $\frac{d v}{d x}$ is for $\mathrm{x}=\mathrm{e}$
A. $\frac{2}{e}$
B. 0
C.e
D. 1

Answer: A

- Watch Video Solution

Mathematics Section C

1. The feasible region of a LPP under the constraints $x-y \leq 1, x+y \geq 3, x \geq 0, y \geq 0$
A. is bounded and lies in first quadrant
B. Is unbounded and lies first quadrant
C. does not exist
D. is not in the first quadrant

Answer: B

- Watch Video Solution

2. If $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 2 \\ x\end{array}\right]=0$, then the value of x is
A. 0
B. -1
C. -3
D. 3

Answer: B

- Watch Video Solution

3. A music concert is organised in a stadium that has a capacity of 36000 people . With ticket price of Rs. 10 the average attendance has been 24000 . Some financial expert estimated that price of a ticket should be determined by the function $p(x)=15-\frac{x}{3000}$, where x is the number of tickets sold Based on the above information, answer the following questions

The value of x for which revenue is maximum , is
A. 25000
B. 22500
C. 21000
D. 20000

Answer: B

- View Text Solution

4.

For
$f: A \rightarrow A$ and $A=\{1,2,3,4\}, f=\{(1,2),(2,3),(3,4),(4,1)\}$
is
A. injective only
B. surjective only
C. Bijective
D. Neither injective nor subjective

Answer: C

- Watch Video Solution

5. If $|\mathrm{A}|=3$ and $A^{-1}=\left[\begin{array}{cc}3 & -1 \\ \frac{-5}{3} & \frac{2}{3}\end{array}\right]$ then $\operatorname{adj} \mathrm{A}=$?
A. $\left[\begin{array}{cc}9 & -5 \\ -3 & 2\end{array}\right]$
B. $\left[\begin{array}{cc}9 & 2 \\ -5 & -3\end{array}\right]$
C. $\left[\begin{array}{ll}9 & -3 \\ 2 & -5\end{array}\right]$
D. $\left[\begin{array}{cc}9 & -3 \\ -5 & 2\end{array}\right]$

Answer: D
6. Harsh made a piggy bank for himself using clay. If the shape of the bank is based on the function $f(x)=|x-4|+|x-5|$ where $f(x)$ represents the height of the bank

Based on the above information, answer the following

questions:

For $x>6$ the value of the function $\mathrm{f}(\mathrm{x})$ is
A. 1
B. -1
C. $2 x-9$
D. $2 x+1$

Answer: C

7. Harsh made a piggy bank for himself using clay. If the shape of the bank is based on the function $f(x)=|x-4|+|x-5|$ where $f(x)$ represents the height of the bank

At $x=4.5$ the value of the functions $f(x)$ is
A. 1
B. -1
C. 0
D. 10

Answer: A

D Watch Video Solution
8. Harsh made a piggy bank for himself using clay. If the shape of the bank is based on the function $f(x)=|x-4|+|x-5|$ where $f(x)$ represents the height of the bank

The value of $f^{\prime}(x)$ at $x=4$ is :
A. -2
B. 1
C. -1
D. Not defined

Answer: D

- Watch Video Solution

9. Harsh made a piggy bank for himself using clay. If the shape of the bank is based on the function $f(x)=|x-4|+|x-5|$ where $f(x)$ represents the height of the bank

For $x \in(4,5)$ the value of the functions $f(x)$ is
A. $2 x-9$
B. 1
C. -1
D. $2 x+1$

Answer: B

- Watch Video Solution

10. Harsh made a piggy bank for himself using clay. If the shape of the bank is based on the function $f(x)=|x-4|+|x-5|$ where $f(x)$ represents the height of the bank

Based on the above information, answer the following

questions:

The function $|x|$ is
A. continuous everywhere but not differentiable
B. both continuous and differentiable
C. not continuous but differentiable everywhere
D. neither continuous nor differentiable

Answer: A

