

MATHS

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER 7

Section A

1. If
$$\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$
 =x then the value of sin x

is

A.
$$-\frac{\sqrt{3}}{2}$$

B.
$$\frac{\sqrt{3}}{2}$$

$$\mathsf{C.}-\frac{1}{2}$$

D. $\frac{1}{2}$

Answer: B

2. If the elements of a matrix A of order
$$2 imes 3$$
 are defined as $a_{ij} = \left\{ egin{array}{ll} i+j & i=j \\ i-j & i
eq j \end{array}
ight.$ then the

 $\mathsf{matrix}\ A^T$ is :

A.
$$\begin{bmatrix} -2 & 1 & 2 \\ -1 & -4 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$$

B.
$$\begin{bmatrix} 2 & 1 \\ -1 & 4 \\ -2 & -1 \end{bmatrix}$$

$$\mathsf{C.}\begin{bmatrix}2 & -1 & -2\\1 & 4 & -1\end{bmatrix}$$

D.
$$\begin{bmatrix} 0 & 3 \\ 3 & 0 \\ 4 & 5 \end{bmatrix}$$

Answer: B

3. Let $\mathsf{f}:\mathsf{N} \to R$ be defined by $\mathsf{f}(\mathsf{x}) = x^2 + 1$.

Then the pre - image (s) of 17 are:

- A. ± 4
- B.-4
- **C**. 4

D. Data insuficient

Answer: C

4. If y = sin t and x = 2 t then
$$\frac{d^2y}{dx^2}$$
 =

A.
$$-\frac{1}{4} \sin t$$

$$C. \frac{1}{4} \cos t$$

Answer: A

5. The logarithmic function defined as f(x) = log x is strictly increasing in :

- A.R
- B. $[0, \infty)$
- C. $(-\infty,0)$
- $D.(0,\infty)$

Answer: D

6. If
$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$
 then A (adj A) =

A.
$$\begin{bmatrix} 1 & 7 & -9 \\ 2 & 3 & 4 \\ -1 & -1 & 0 \end{bmatrix}$$
B.
$$\begin{bmatrix} 4 & -5 & 3 \\ -3 & -2 & 1 \\ 0 & 7 & 9 \end{bmatrix}$$
C.
$$\begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$
D.
$$\begin{bmatrix} 0 & -1 & 3 \\ 0 & 4 & 7 \\ 0 & 0 & 2 \end{bmatrix}$$

Answer: C

View Text Solution

7. Let A be the set of human beings in a town at a particular time. A relation R on set A is defined as $R = \{ (x,y): x \text{ is younger than } y \}$. Then R is

A. reflexive symmetric but not transitive.

B. symmetric transitive but not reflexive

C. an equivalence relation

D. neither reflexive nor symmetric nor transitive .

Answer: D

Watch Video Solution

- **8.** Region represented by $x \geq 0, y \geq 0$ is
 - A. first quadrant
 - B. second quadrant
 - C. third quadrant
 - D. fourth quadrant

Answer: A

9. The point (s) of local maxima and local minima of the funcation f(x)

$$=3x^4-8x^3+12x^2-48x+1$$
 are :

A. 2

 $\mathsf{B.}\pm 2$

C. 2, $-\sqrt{2}$

D. $-\sqrt{2}$

10. If A =
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 then $A^2 - 3I = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

A.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
B.
$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$
C.
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
D.
$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

D.
$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

Answer: D

Watch Video Solution

11. If the points (3,-2) , (x,2) and (8,8) are collinear then the value fo x is :

A. 2

B. 5

C. 4

D. 3

Answer: B

Watch Video Solution

12. If
$$\left[x\cos\left(\cot^{-1}x\right) + \sin\left(\cot^{-1}x\right)\right]^2 = \frac{51}{50}$$

then the positive value of x is

A.
$$\frac{1}{\sqrt{2}}$$

$$B. \frac{1}{5\sqrt{2}}$$

$$\mathsf{C.}\,2\sqrt{2}$$

D.
$$5\sqrt{2}$$

Answer: B

Watch Video Solution

13. If
$$xy^2=ax^2+bxy+y^2$$
 then $\dfrac{dy}{dx}$ =

A.
$$\dfrac{2ax+by-y^2}{2xy-bx-2y}$$

B.
$$\dfrac{2x^2+axy+y^2}{x^2+y^2+2xy}$$

C.
$$\dfrac{2ax+by+y^2}{2xy+bx-2y}$$

D.
$$\frac{ax-by-xy}{xy+x^2-y^2}$$

Answer: A

Watch Video Solution

then the value of f(0) is

14. If
$$f(x) = \frac{\sqrt{4+x}-2}{x}$$
 is continuous x=0

A. 0

3.
$$\frac{1}{2}$$

B.
$$\frac{1}{2}$$

D. not defined

Answer: C

15. Which of the following is a corner point of the feasible region of system of linear inequations $2x + 3y \le 6, x + 4y \le 4$ and $x, y \ge 0$?

A.
$$(1, 0)$$

B.
$$(1, 1)$$

$$D.\left(\frac{12}{5},\frac{2}{5}\right)$$

Answer: D

- **16.** A relation R in set A = {1,2,3} is defined as R = { (1,1) , (1,2) , (2,2) , (2,1) , (2,3) } . Which of the following ordered pair shall be added to make it a symmetric relation ?
 - A. (3,3)
 - B. (1,3)
 - C.(3,2)

D. (3,1)

Answer: C

Watch Video Solution

 $-18x^2 + 36x + 27$ is :

A. 25

B. 45

D. 27

Answer: B

Watch Video Solution

18. If a^b . $b^a=16$ then the value of $\displaystyle \frac{db}{da}$ at (2,2)

is:

A. - 1

B. 1

D.-2

Answer: A

Watch Video Solution

19. If $\begin{bmatrix} 6-x & 4 \\ 3-x & 1 \end{bmatrix}$ is a singular matrix then the

value of x is

A.-2

B. - 1

D. 2

Answer: D

Watch Video Solution

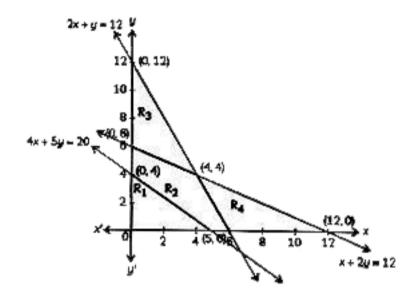
20. If the tangent to a curve $y=x^3-x$ at x=2 is parallel to the line y=mx -19 then the value of m is

A. 11

B.
$$\frac{19}{2}$$

D. - 19

Answer: B


Watch Video Solution

Section B

1. Which of the following should be the feasible region of the system of linear Inequalities x +

2y $\leq 12, 2x+y \leq 12, 4x+5y \geq 20$ and

 $x,y\geq 0$?

A. R_1

B. R_2

 $\mathsf{C}.\,R_3$

D. R_4

Answer: A

Watch Video Solution

2. The function defined as $f(x) = 2x^3 - 6x + 3$ is

A. strictly increasing in

 $(-\infty,\,-1)\cup(1,\infty)$ and strictly

decreasing in (-1,1)

B. strictly increasing in (-1,1) and strictly

decreasing in
$$(-\infty, -1) \cup (1, \infty)$$
 .

C. strictly increasing in

$$(-\infty,\,-1)\cup[1,\infty)$$
 and strictly decreasing in [-1,1].

D. strictly increasing in [-1,1] and strictly

decreasing in
$$(-\infty, -1) \cup [1, \infty)$$

Answer: B

3. If the function $f:\{1,2,3\} \to \{1,2,3\}$ is one one then it must be :

A. many -one

B. onto

C. into

D. reflexive

Answer: B

4. The value of
$$\sin\left[\frac{\pi}{3}-\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right]$$

A.
$$\frac{1}{\sqrt{2}}$$
B. $\frac{1}{2}$

3.
$$\frac{1}{2}$$

Answer: D

5. If
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{17} \begin{bmatrix} 1 & 5 & 1 \\ 8 & 6 & -9 \\ 10 & -1 & -7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$
 then

the value of xyz is

- A. 0
- B. 5
- C. 8
- D. 6

Answer: A

6. If y =
$$\cos^{-1} \left[\frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right]$$
 then $\frac{dy}{dx}$ =

A.
$$\frac{1}{\sqrt{1-x^2}}$$

B.
$$\dfrac{-2x}{\Big(-x\sqrt{1-x^2}\Big)^2}$$

C.
$$\frac{4x^2}{x+\sqrt{1-x^2}}$$

D.
$$2\sqrt{1-x^2}$$

Answer: C

7. If the function y = m $\log x + nx^2 + x$ has its critical points at x = -1 and x = 2 then the values of m and n respectively are

A. 2,
$$\frac{1}{2}$$

B.
$$-2, \frac{1}{2}$$

C. 2,
$$-\frac{1}{2}$$

D.
$$-2, -\frac{1}{2}$$

Answer: C

8. If y =
$$(\cot^{-1} x)^2$$
 then

$$ig(x^2+1ig)^2 rac{d^2 y}{dx^2} + x ig(x^2+1ig) rac{dy}{dx} - 2 = 0$$

В.

$$ig(x^2+1ig)^2rac{d^2y}{dx^2} - 2xig(x^2+1ig)rac{dy}{dx} + 1 = 0$$

C.

$$ig(x^2+1ig)^2rac{d^2y}{dx^2}+2xig(x^2+1ig)rac{dy}{dx}-2=0$$
D. $ig(x^2+1ig)^2rac{d^2y}{dx^2}-xig(x^2+1ig)+2=0$

Answer: C

9. If the function
$$\mathsf{f}:A\to \mathsf{B}$$
 is defined as $\mathsf{f}(\mathsf{x})$

$$=rac{x-2}{x-3}$$
 then the set A must be

A.R

B. R - {3}

C. R - {1}

D. R - { 2}

Answer: B

10. If A =
$$\begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$$
 and B =

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$
 then BA if it exist is :

A.
$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
B.
$$\begin{bmatrix} -3 & 1 & 8 \\ 2 & 0 & -8 \\ 6 & 1 & 3 \end{bmatrix}$$

$$\mathsf{C.} \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

D. Does not exist

Answer: C

View Text Solution

11. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
 then $| \text{adj } A | =$

A. 121

B. 132

C. 178

D. 184

Answer: A

Watch Video Solution

12. The equation of normal to the curve $y = 3x^2$

$$-4x +7 at x = 1 is :$$

A.
$$2x - y + 4 = 0$$

B.
$$2x + y + 8 = 0$$

C.
$$x + 2y + 13 = 0$$

D.
$$x - 2y + 11 = 0$$

Answer: C

Watch Video Solution

13. If the corner points of a feasible region of system of linear inequalities are (15,20) (40,15) and (2,72) and the objective function is Z = 6x + 3y then $Z_{\rm max}$ - $Z_{\rm min}$ =

A. 135

B. 78

C. 57

D. 101

Answer: A

Watch Video Solution

14. If the matrix
$$P = \begin{bmatrix} 7 & a & 4 \\ -1 & 3 & b \\ c & 6 & 2 \end{bmatrix}$$
 is a

symmetric matrix then the respective values of .

a ,b,c are

A. 4,6,-1

B. 6,4,-1

C. -1, 6,4

D. 6,-1,4

Answer: C

Watch Video Solution

15. If the function f(x) =
$$\begin{cases} 10 & x \leq 3 \\ ax + b & 3 < x < 7 \\ 18 & x \geq 7 \end{cases}$$

is continuous function then the value of a + b

is

A. 8

B. 6

C. 4

D. 2

Answer: B

Watch Video Solution

16. If
$$y = e^x \sin x$$
 then $\frac{d^2y}{dx^2} =$

A. $2e^x$ sin x

B. $2e^x$ ($\sin x - \cos x$)

 $\mathsf{C.}\, 2e^x(\cos x - \sin)$

D. $2e^x \cos x$

Answer: D

Watch Video Solution

17. The function f(t) = $4 \sin^3 t - 6 \sin^2 t$ +12 sin

t + 100 is strictly:

A. increasing in $\left(\pi, \frac{3\pi}{2}\right)$

B. decreasing in $\left(\frac{\pi}{2},\pi\right)$

C. decreasing in
$$\Big[-rac{\pi}{2},rac{\pi}{2}\Big]$$

D. decreaing in $\left[0, \frac{\pi}{2}\right]$

Answer: B

Watch Video Solution

18. The tangent to the curve $y=e^{2x}$ at the point (0,1) meets x - axis at :

A.(0,1)

$$\mathsf{B.}\left(-\frac{1}{2},0\right)$$

$$\mathsf{C}.\,(2,0)$$

Answer: B

Watch Video Solution

$$\left[rac{1}{2} \cos^{-1} rac{2}{\sqrt{5}}
ight]$$
 is

A.
$$2\sqrt{5}$$

B.
$$\sqrt{5}-2$$

$$\frac{\sqrt{5}-2}{2}$$

D.
$$5-\sqrt{2}$$

Answer: B

View Text Solution

20. The cofactor of the element 0 in the determinant
$$\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$$
 is

A.
$$-19$$

B. 9

 $\mathsf{C.}-9$

D. 19

Answer: A

Watch Video Solution

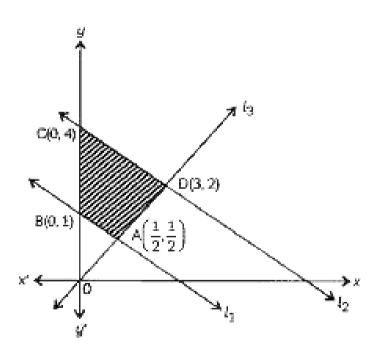
Section C

1. Which of the following is correct regarding

 $f(x) = x^3$?

A.
$$f(x)$$
 is neither continuous nor differentiable at $x = 3$

B. f(x) is continuous but not differentiable at x =3


C. f(x) is continuous as well as differentiable at x =3

D. None of the given statements is correct .

Answer: C

2. The feasible region of a system of linear inequalities is shown shaded in the following graph. If the objective function is Z = ax + by where a,b are constants and the maximum of Z occurs at points A and D then:

A.
$$3a=5b$$

$$B. a = -\frac{3}{5}b$$

$$\mathsf{C.}\,4a=7b$$

D. a =
$$-\frac{4}{7}$$
 b

Answer: B

Watch Video Solution

3. If
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 3 & 2 \\ 3 & -3 & -4 \end{bmatrix}$$
 then A^{-1} if it exists

is:

A.
$$\frac{1}{67}\begin{bmatrix} -6 & 14 & -15 \\ 17 & 5 & 9 \\ 13 & -8 & -1 \end{bmatrix}$$
B. $\frac{1}{67}\begin{bmatrix} 6 & -14 & 15 \\ -17 & -5 & -9 \\ -13 & 8 & 1 \end{bmatrix}$
C. $\frac{1}{67}\begin{bmatrix} -6 & 17 & 13 \\ 14 & 5 & -8 \\ -15 & 9 & -1 \end{bmatrix}$

Answer: C

D. Does not exist

View Text Solution

4. If the curves ay $\pm x^2 = 7$ and $x^3 = y$ cut orthogonally at (1,1) then the value of a is

- **A.** 1
- B.0
- C. 6
- D. 6

Answer: D

Watch Video Solution

5. If A is a invertible matrix of order 4 then

$$|A^{-1}| =$$

Watch Video Solution

6. A man has Rs 35000 which the want to invest in two different types of bonds say X and Y . The first bond pays 10% interest p.a and the second one pays 8% interest p.a. IF A a 1 imes 2 matrix and B is a 2 imes 1 matrix representing the ivestement and interest rate on each bond respectively then answer the following questions.

If Rs 15000 is inversted in bond X then

A. A = Investment
$$\begin{bmatrix} 15000 & 20000 \end{bmatrix}$$

interest rate

$$B = {}^{X}_{Y} \left[egin{array}{c} 0.1 \\ 0.08 \end{array}
ight]$$

B. A = Investment
$$\begin{bmatrix} X & Y \\ 15000 & 20000 \end{bmatrix}$$

interest rate

$$B=rac{X}{Y}igg[egin{matrix} 0.08 \ 0.1 \ \end{bmatrix}$$

C.
$$A = {}^X_Y iggl[rac{15000}{20000} iggr], B iggl[= egin{bmatrix} X & X \\ 0.1 & 0.8 \end{bmatrix}$$

Interest rate

7. A man has Rs 35000 which the want to

invest in two different types of bonds say X

and Y. The first bond pays 10% interest p.a.

and the second one pays 8% interest p.a. IF A a

D. $A = {X \atop Y} \left \lfloor {20000 \atop 20000} \right \rfloor, B \left \lfloor {150000} \right \rfloor$

Interest rate

Answer: A

1 imes 2 matrix and B is a 2 imes 1 matrix

representing the ivestement and interest rate on each bond respectively then answer the following questions .

The total amount of interest received on both bonds is given by:

A. B'A

B. AB

C. A'B

D. BA

Answer: B

8. A man has Rs 35000 which the want to invest in two different types of bonds say X and Y . The first bond pays 10% interest p.a and the second one pays 8% interest p.a. IF A a 1×2 matrix and B is a 2×1 matrix representing the ivestement and interest rate on each bond respectively then answer the following questions.

If Rs 15000 is invested in bond X then total amount of interset received on both bonds is :

- A. Rs 1800
- B. Rs 1400
- C. Rs 2100
- D. Rs 3100

Answer: D

9. A man has Rs 35000 which the want to invest in two different types of bonds say X and Y . The first bond pays 10% interest p.a

and the second one pays 8% interest p.a. IF A a 1×2 matrix and B is a 2×1 matrix representing the ivestement and interest rate on each bond respectively then answer the following questions .

If the trust fund obtains an annual total intereset of Rs 3200 then the investment in two bonds is :

A. Rs 21000 in X, Rs 17000 in Y

B. Rs 17000 in X, Rs 21000 in Y

C. Rs 15000 in Y, Rs 20000 in Y

D. Rs 20000 in X, Rs 15000 in Y

Answer: D

View Text Solution

10. A man has Rs 35000 which the want to invest in two different types of bonds say X and Y . The first bond pays 10% interest p.a and the second one pays 8% interest p.a. IF A a 1×2 matrix and B is a 2×1 matrix representing the ivestement and interest rate

on each bond respectively then answer the following questions .

If the amount of interest received in bond X is

Rs 500 then the amount of investment in

bond Y is:

A. Rs 30000

B. Rs 20000

C. Rs 15000

D. Rs 10000

Answer: A

