©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER 04 (SOLVED)

Section A

1. The rms value of ac is given by:

A. $1 A$
B. $2 A$
C. $3 A$
D. $4 A$

Answer: B

D View Text Solution

2. Principle of working of a transformer is:

A. Self-Inductance only
B. Mutual inductance
C. Electrical
D. Both (b) and (c)

Answer: B

D View Text Solution

3. The phase angle between current and voltage in a purely inductive circuit is
A. Current lags behind emf by an angle of
$\frac{\pi}{2}$
B. Current lags behind emf by an angle of
C. Current Leads the applied emf by an
angle of $\frac{\pi}{2}$
D. Current and applied emf are in same phase.

Answer: B

- Watch Video Solution

4. The magnetic flux linked with square shaped
coil of area $10^{-2} m^{2}$ perpendicular to a magnetic field of $10^{3} \mathrm{~T}$:
A. 10 Wb
B. 5 Wb
C. $10^{5} \mathrm{~Wb}$
D. $10^{-5} \mathrm{wb}$

Answer: A

D View Text Solution
5. An e.m.f. is produced in a coil, which is not connected to an external voltage source. This can be due to
A. The coil being in a time varying magnetic
field
B. The coil moving in a constant magnetic
field
C. The coil moving in a time varying
magnetic field
D. All of the above

Answer: D
6. Find the inductance of a coil of 100 turns carrying 5 mA producing a magnetic flux of $10^{-5} \mathrm{~Wb}$:
A. 0.02 mH
B. 0.2 mA
C. 2.0 mH
D. 0.08 mH

Answer: A

D View Text Solution

7. Correct representation of magnetic field

lines are:

C.

Answer: B

D Watch Video Solution
8. At a certain $B_{H}=\frac{1}{\sqrt{3}} B_{v}$, dip angle is:
A. 30°
B. 45°
C. 60°
D. 90°

Answer: B

D View Text Solution
9. An electron is projected with uniform
velocity along the axis of a current carrying
long solenoid. Which of the following is true?
A. The electron will experience a force at
45° to the axis and hence execute a heli
cal path
B. The electron will accelerate along the
axis
C. The electron will continue to move with
uniform velocity along the axis of the so
lenoid
D. The electron will be circular about the axis.

Answer: C

- Watch Video Solution

10. Work done by a magnetic field on moving
charge is:
A. 1
B. 0
C. infinite
D. Magnetic field is 'independent of charge

Answer: B

D View Text Solution
11. MAGNETIC FIELD OF A TOROID
A. $B=\frac{\mu_{0} N I}{2 \pi r}$
B. $B=\mu_{0} n l$
$\begin{aligned} \text { C. } B & =\mu_{0} \frac{l}{n} \\ \text { D. } B & =\frac{\mu_{0} l}{2 r}\end{aligned}$

Answer: A

- Watch Video Solution

12. The expression of figure of merit of a galvanometer is given by:
A. $\frac{N B A}{K}$
B. $\frac{N K}{B A}$
C. $\frac{k}{N B A}$
D. $\frac{k B}{N A}$

Answer: C

D View Text Solution

13. At temperature T and potential difference

V , the drift velocity of electrons is proportional
to:
A. \sqrt{v}
B. \sqrt{T}
C. V
D. T

Answer: C

D View Text Solution
14. A sensitive galvonometer:
A. produces less deflection
B. produces more deflection
C. does not produce any deflection
D. increase resistance

Answer: B

D View Text Solution

15. If all four resistance and resistance of a galvanometer are equal to R with equal resistance of wheatstone bridge, then equivalent resistance is:
A. R
B. $\frac{R}{4}$
C. 2 R
D. $\frac{R}{2}$

Answer: A

- View Text Solution

16. Electromotive force is a:
A. potential

B. non-contact

C. P.D.
D. contact

Answer: C

- View Text Solution

17. Value of current in given circuit is:

A. 50 A
B. 380 A
C. $\frac{210}{38} A$
D. $5 A$

Answer: D
18. Angle between \vec{E} and equipotential surface is always
A. 0° to 180°
B. 0° to 90°
C. 0° always
D. 90° always

Answer: D
19. Where does the energy of a capacitor reside?
A. On plate
B. On plate
C. Between plates A and B
D. Outside plates A and B

Answer: C

D Watch Video Solution
20. n equally spaced plates are stacked to make a parallel plate capacitor. If-C is the POLES, capacitance between two adjacent plates, the resultant capacitance is :
A. nC
B. $n^{2} C$
C. $(n-1) C$
D. $\frac{C}{n}$
21. Equipotentials at a great distance from a collection of charges whose total sum is not
zero are approximately
A. Ellipsoids
B. Planes
C. Spheres
D. Paraboloids
22. When we bring two electrons close to each
other, the electrostatic potential energy of the
system:
A. Increases
B. Becomes zero
C. Remains unchanged
D. Decreases
23. If two charged spheres are immersed in a
liquid of dielectric constant 2 , how will the force between them vary?
A. F
B. $\frac{F}{4}$
C. $\frac{F}{2}$
D. 2 F
24. Maximum torque on a dipole in electric
field is given by:
A. $p E$
B. $\frac{P}{E}$
C. $\frac{E}{P}$
D. $\vec{P} \cdot \vec{E}$

Answer: A
25. What is the electric flux if a charge is placed in one corner of a Cube of length I:
A. $\frac{q}{\varepsilon_{0}}$
B. $\frac{q}{8 \varepsilon_{0}}$
C. $\frac{q l}{6 \varepsilon_{0}}$
D. $\frac{q l}{3 \varepsilon_{0}}$

Answer: A

D View Text Solution

Section B

1. In a purely capacitive ac circuit, the value of
current is:

$$
\begin{aligned}
& \text { A. } i_{m} \sin \left(\omega t+\frac{\pi}{4}\right) \\
& \text { B. } i_{m} \cos \left(\omega t+\frac{\pi}{2}\right) \\
& \text { C. } i_{m} \sin \left(\omega t+\frac{\pi}{2}\right) \\
& \text { D. } i_{m} \cos \left(\omega t+\frac{\pi}{4}\right)
\end{aligned}
$$

2. What is the rms current through bulb rated 100 W for 220 V ac supply of 50 Hz ?
A. 0.1 A
B. 50 A
C. 0.9 A
D. 0.45 A

Answer: D
3. Horizontal straight wire of 10 m extending
from East to West is falling with the speed of 5
m / s at 90° to the horizontal component of
Earth's magnetic field of $0.30 \times 10^{-4} \mathrm{~Wb} \mathrm{~m} 2$

The instantaneous emf is:
A. $1.5 \times 10^{-6} \mathrm{~V}$
B. $1.5 \times 10^{-4} \mathrm{~V}$
C. $1.5 \times 10^{-3} \mathrm{~V}$
D. $3 \times 10^{-3} \mathrm{~V}$

Answer: C

D View Text Solution

4. Current induced in the given loop due to
wire $A B$ is:

$A \longrightarrow B$
A. clockwise
B. anticlockwise

C. both (a) and (b)

D. scattered

Answer: A

D View Text Solution

5. Square of A meters in an $X-Y$ plane is under magnetic field of $\mathrm{B}=\left(B_{0}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\right) T$.

The magnitude of flux is given by? $B_{0}=$ constant
A. $\sqrt{29} B_{0} A^{2} \mathrm{~Wb}$
B. $2 B_{0} A^{2} \mathrm{~Wb}$
C. $4 B_{0} A^{2} \mathrm{~Wb}$
D. $3 B_{0} A^{2} w b$

Answer: C

D View Text Solution
6. Two loops in a uniform magnetic field are perpendicular to it. One is at rest and other is in motion. In which of the loop emf is induced:
A. rest loop
B. motional loop
C. both (a) and (b)
D. emf cannot be induced in loops with uni
form magnetic field

Answer: B

- View Text Solution

7. A rectangular Loop $A B C D$ with movable arm

AB of length 10 cm and resistance 2Ω is placed in a uniform magnetic field of 0-1 T. The field is perpendicular to the plane of the loop.

The resistance of arms $C B, B A$ and $C D$ is negligible.

		\times	\times	x	\times	\times	x
\times							
\times	x	\times	x		*	$* V$	\times
\times							
\times	\times	\times			\times	\times	\times

EMF induced in arm $A B$ is given by:
B. 0.2 V
C. 0.3 V
D. 0.4 V

Answer: B

D View Text Solution
8. A copper loop and a silver loop are removed
from a magnetic field simultaneously. Find the correct relation:
A. $e m f_{c}>e m f_{s}$
B. $e m f_{c}<e m f_{s}$
C. $e m f_{c}=e m f_{s}$
D. $e m f_{c} \leq e m f_{s}$

Answer: C

D View Text Solution

9. Two inductors of inductance L are joined in parallel. The new resistance becomes:
A. 2 L
B. $\frac{L}{2}$
C. L
D. Zero

Answer: B

D View Text Solution

10. Constant voltage is applied between the two ends of a uniform metallic wire. The heat developed is doubled if -
A. radius of the wire is doubled
B. length of the wire is doubled
C. both (a) and (b)
D. both length and radius of wire is halved

Answer: C

D Watch Video Solution

11. The physical quantity having the dimensions $\left[M^{-1} L^{-3} T^{3} A^{2}\right]$ is
A. resistance
B. resistivity
C. electrical conductivity
D. electromotive force

Answer: C

D Watch Video Solution

12. 0.2 A current is supplied to the primary
circuit. The specific resistance is 4×10^{-7}
ohm meter and cross-section area is
$8 \times 10^{-7} m^{2}$. The potential gradient is equal
to:

> A. $1 V m^{-1}$
> B. $0.5 V m^{-1}$
> C. $0.1 V m^{-1}$
> D. $0.2 V m^{-1}$

Answer: C

D View Text Solution
13. If E is the electric field in uniform conductor, I is the current and V_{a} and P denotes drift velocity and thermal power produced, then which of the following is correct:

C.

D. Both (a) and (b)

Answer: D

D View Text Solution

14. Permittivity of water if dielectric 40 is:
A. $3.54 \times 10^{-9} C^{2} N^{-1} m^{-2}$
B. $3.54 \times 10^{-10} C^{2} N^{-1} m^{-2}$
C. $3 \times 10^{-10} C^{2} N^{-1} m^{-2}$
D. 0

Answer: B

- View Text Solution

15. Two dielectric blocks in series make a parallel plate capacitor. Blocks are of thickness d_{1} and d_{2} respectively.

Effective dielectric constant is:

$$
\text { A. } \frac{K_{1} d_{1}+K_{2} d_{2}}{K_{1}+K_{2}}
$$

B. $\frac{K_{1} d_{1}+K_{2} d_{2}}{d_{1}+d_{2}}$
C. $\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$
D. $\frac{K_{1} K_{2}\left(d_{1}+d_{2}\right)}{\left(K_{1} d_{2}+K_{2} d_{1}\right)}$

Answer: D

D View Text Solution
16. Which capacitor has higher capacitance ?

A. Capacitor A
B. Capacitor B
C. Both (A) and (B)
D. Both are equal

Answer: A

D View Text Solution

17. Find the charge on parallel plate capacitor
having circular plates of radius 8 cm and plate
separation 1 mm . The potential difference is

100 V :
A. $1.78 \times 10^{-5} \mathrm{C}$
B. $2 \times 10^{-9} C$
C. $1.78 \times 10^{-8} \mathrm{C}$

D. $4.3 \times 10^{4} \mathrm{C}$

Answer: C

D View Text Solution

18. Force of 12 N is experienced by two charges
of $+8 \mu \mathrm{C}$ and $-6 \mu \mathrm{C}$. A charge of $+4 \mu \mathrm{C}$ is
added. The new force between the charges will be:
A. 2 N
B. 24 N
C. 6 N
D. 12 N

Answer: C

D View Text Solution

19.

Two large thin metal plates are parallel and close to each other. On their inner surface, plate have surface charge density of opposing magnitude of $17.0 \times 10^{-22} \mathrm{Cm}^{-2}$? as shown.

Electric field in outer region of first plate is:
A. $17 \times 10^{-22} \frac{N}{C}$
B. $1.5 \times 10^{55} \frac{\mathrm{~N}}{\mathrm{C}}$
C. $1.9 \times 10^{-10} \frac{N}{C}$
D. Zero

Answer: D

D View Text Solution

20. Given below are two statements labelled as

Assertion (A) and Reason (R):

Select the most appropriate answer from the options given below.

Assertion (A): In a non-uniform electric field, a dipole will have translatory as well as rotatory motion.

Reason (R): In a non-uniform electric field, a dipole experiences a force as well as torque.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not
the cor rect explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer: A

D View Text Solution

21. Given below are two statements labelled as

Assertion (A) and Reason (R):

Select the most appropriate answer from the options given below.

Assertion (A): The resistance of material
reduces to half of its initial value when cut into half.

Reason (R): Temperature material of a
conductor and dimension alter the resistivity

of a conductor.

A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not the cor rect explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer: A

22. Given below are two statements labelled as

Assertion (A) and Reason (R):

Select the most appropriate answer from the options given below.

Assertion (A): Fuse wire must have melting point and resistance.

Reason (R): Fuse is used for small current flow only.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not the cor rect explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer: A

D View Text Solution

23. Given below are two statements labelled as

Assertion (A) and Reason (R):

Select the most appropriate answer from the
options given below.

Assertion (A): Electric field is always normal to
equipotential surfaces and along the direction
of decreasing order of potential

Reason (R): Negative gradient of alectric potential is electric field.
A. Both (A) and (R) are true and (R) is the
correct explanation of (A).
B. Both (A) and (R) are true but (R) is not
the cor rect explanation of (A).
C. (A) is true but (R) is false.

D. (A) is false and (R) is also false.

Answer: B

D View Text Solution

24. Given below are two statements labelled as

Assertion (A) and Reason (R):

Select the most appropriate answer from the options given below.

Assertion (A): Dissipation of heat inside the cell is due to its internal resistance.

Reason (R): Internal resistance is due to flow of ions in cell through electrolyte.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not the cor rect explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer: A

Section C

1.

Value of Bohr magneton is:
A. $9.27 \times 10^{-20} A m^{2}$
B. $9.27 \times 10^{-23} \mathrm{Am}^{2}$
C. $1.0 \times 10^{-21} A m^{2}$

$$
\text { D. } 9.27 \times 10^{-24} A m^{2}
$$

Answer: D

D View Text Solution

2. The magnetic field of the earth can be modelled by that of a point dipole placed at the centre of the earth. The dipole axis makes an angle of 11.3° with the axis of the earth. At mumbai, declination is nearlyzero, then.
A. the plane defined by dipole axis and axis
passes through greenwich
B. declination averaged over earth must be
always negative
C. the declination varies between $11.3^{\circ} \mathrm{W}$
to $11.3^{\circ} \mathrm{E}$
D. at least declination is 0°.

Answer: C

D Watch Video Solution

3. Case Study: Read the following paragraph and answer the questions:

In a beam of charged particles, not all particles move with the same speed. A charged porticle with mass m, charge q and speed v 'enters a region of space where.-electric field and magnetic fields are perpendicular to particle's
velocity and to each other. Magnetic force is
upward with magnitude qVB. When the total
force is zero, there is no deflection om
$(v)=\frac{E}{B}$

Electron with uniform velocity is projected along the axis of a current carrying solenoid. Then:
A. The electron path will be circular about the axis
B. The electron will be accelerated along
the crisis
C. The electron will experience a force at
45° to the axis executing helical path
D. Electron will continue to move with uni
form velocity along the axis of solenoid

Answer: D

D View Text Solution
4. Case Study: Read the following paragraph and answer the questions:

In a beam of charged particles, not all particles move with the same speed. A charged porticle with mass m, charge q and speed v 'enters a region of space where-electric field and magnetic fields are perpendicular to particle's velocity and to each other. Magnetic force is upward with magnitude qVB. When the total force is zero, there is no deflection om $(v)=\frac{E}{B}$

A cubical region of space filled with some uniform electric and magnetic field. An electron and positron enter opposite to each other with velocity v and -V respectively. Then:
A. Both particles gain or loose energy at same rate.
B. Motion of centre of mass is determined
by B alone
C. Magnetic force causes acceleration on
both particles equally
D. Motion of centre of mass is determined
by Bond q.

Answer: B

D View Text Solution
5. Case Study: Read the following paragraph and answer the questions:

In a beam of charged particles, not all particles move with the same speed. A charged porticle with mass m , charge q and speed v 'enters a region of space where-electric field and magnetic fields are perpendicular to particle's velocity and to each other. Magnetic force is upward with magnitude qVB. When the total force is zero, there is no deflection om $(v)=\frac{E}{B}$

A charged particle goes undeflected in a region of velocity selector containing \vec{E} and \vec{B}. then:
A. \vec{E} is not parallel to \vec{B} and \vec{v}
B. $\vec{E}\|\vec{B}, \vec{v}\| \vec{E}$
C. $\vec{E}|\mid \vec{v}$ but not \vec{B}

D. $\vec{E} \mid$ B but not \vec{v}

Answer: B

D View Text Solution

6. Case Study: Read the following paragraph and answer the questions:

In a beam of charged particles, not all particles move with the same speed. A charged porticle with mass m, charge q and speed v 'enters a region of space where.-electric field and
magnetic fields are perpendicular to particle's
velocity and to each other. Magnetic force is
upward with magnitude qVB. When the total
force is zero, there is no deflection om
$(v)=\frac{E}{B}$

A charged particle enters $\vec{E}=50 N C^{-1}$ and
$\vec{B}=2.5 \times 10^{-5}$ weber m^{-1}. It comes out without any change with velocity of.

$$
\begin{aligned}
& \text { A. } 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { B. } 2.5 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { C. } 0.5 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { D. } 2 \times 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answer: D

- View Text Solution

