©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER 9

Section A

1. If electric flux passing through a close surface is zero then :-
A. no net charge is enclosed by the surface.
B. uniform electric field exists within the surface.
C. electric potential varies from point to point inside the surface.
D. charge is present inside the surface.

Answer:

- Watch Video Solution

2. The electrostatic potential energy between
proton and electron separated by a distance 1
\AA is

> A. $5.1 \times 10^{11} N C^{-1}$
> B. $4.9 \times 10^{11} N C^{-1}$
> C. $5.1 \times 10^{10} N C^{-1}$
> D. $49 \times 10^{12} N C^{-1}$

Answer:

D Watch Video Solution
3. There is a thin conducting wire carrying current. What is the value of magnetic field induction at any point on the conductor itself?

> A. $\frac{\mu_{0}}{4 \pi} \frac{i d l}{r^{2}}$
> B. $\frac{\mu_{0}}{4 \pi} \frac{i d l}{r}$
> C. Zero
> D. $\frac{\mu_{0}}{4 \pi} \frac{i d l}{r^{3}}$

Answer:

D Watch Video Solution
4. Faraday Cage:

A Faraday cage or Faraday shield is an enclosure made of a conducting material. The fields within a conductor cancel out with any external fields, so the electric field within the enclosure is zero. These Faraday cages act as
big hollow conductors you can put things in to shield them from electrical fields. Any electrical shocks the cage receives, pass harmlessly around the outside of the cage.

A point charge of 2 C is placed at centre of

Faraday cage in the shape of cube with surface of 9 cm edge. The number of electric field lines passing through the cube normally will be
A. $1.9 \times 10^{5} \mathrm{Nm}^{2} / C$ entering the surface
B. $1.9 \times 10^{5} \mathrm{Nm}^{2} / C$ leaving the surface
C. $2.0 \times 10^{5} \mathrm{Nm}^{2} / C$ leaving the surface

D. $2.0 \times 10^{9} \mathrm{Nm}^{2} / C$ entering the surface

Answer:

D Watch Video Solution

5. Calculate the magnetic field produced at the centre of a circle of radius 1 m around which a hydrogen nucleus moves in 1 s :

$$
\text { A. } 3.2 \pi \times 10^{-26} T
$$

$$
\text { B. } 32 \times 10^{-26} T
$$

C. $32 \times 10^{-20} T$

$$
\text { D. } 30 \pi \times 10^{-20} T
$$

Answer: A

- Watch Video Solution

6. Force on a charged particle moving with velocity \vec{v} subjected to a magnetic field is zero. This means:
A. Angle between V and B is necessarily
90°
B. Angle between V and B can have any
value other than 0° and 180°
C. Angle between V and B is either zero or
180°
D. Angle between V and B can have any
value other than 90°

Answer: c

7. 2 m long wire moving with $v=1 \mathrm{~ms}^{-1}$ in magnetic field intensity $0.5 \mathrm{Wbm}^{-2}$ perpendicular to the field. The induced emf is':
A. 0.1 V
B. 0.2 V
C. 0.5 V
D. 1 V

Answer: 1V

D Watch Video Solution

8. Wheatstone Bridge

A. light
B. power
C. voltage
D. current

Answer:

D Watch Video Solution

9. What is the SI unit of permeability

A. $\mathrm{Wb} \mathrm{m}^{-1} A^{-1}$
B. $W b m A^{-1}$
C. $\mathrm{Wb} \mathrm{m}^{-1} A^{-2}$
D. Wb m.A

Answer:

- Watch Video Solution

10. An e.m.f. is produced in a coil, which is not connected to an external voltage source. This can be due to
A. the coil moving inside a constant magnetic field
B. the coil being in a time varying magnetic
field
C. the coil moving in a time varying
magnetic field
D. all of the above

Answer:

D Watch Video Solution

11. If there is no charge enclosed then:
A. Flux will be zero
B. Flux will be $\frac{q_{0}}{\varepsilon_{0}}, q_{0}=$ test charge
C. Flux depends on charge
D. Not sufficient information
12. Across a metallic conductor of non-uniform cross section a constant potential difference is applied. The quantity which remains constant along the conductor is
A. Current density
B. Current
C. Drift speed
D. Both (a) and (b)

Answer:

D Watch Video Solution

13. If the radius of gaussion surface increases,
the electric flux is:
A. doubled
B. remains the same
C. halved
D. decreases

Answer: 2

- Watch Video Solution

14.

Two large thin metal plates are parallel and close to each other. On their inner surface,
plate have surface charge density of opposing magnitude of $17.0 \times 10^{-22} \mathrm{Cm}^{-2}$ as shown.

Electric field in outer region of second plate is:

> A. $1.9 \times 10^{-10} \frac{\mathrm{~N}}{\mathrm{C}}$
> B. $1.5 \times 10^{-15} \frac{\mathrm{~N}}{\mathrm{C}}$
> C. zero
> D. $17 \times 10^{10} \frac{\mathrm{~N}}{\mathrm{C}}$

Answer:

- Watch Video Solution

15. What is not possible in a transformer?
A. Direct current

B. Eddy current

C. Induced current
D. Alternating current

Answer:

D Watch Video Solution
16. Relation between potential drop and
length of the potentiometer wire can be graphically represented as:

C.

Answer:

- Watch Video Solution

17. Two charge $+3 \mu C$ and $-3 \mu C$ are held in air unit distance. What is the ratio of force experienced by one another:

$$
\text { A. } m_{e}: m_{p}
$$

B. 1:1
C. $m_{p}: m_{e}$
D. $2: 3$

Answer:

- Watch Video Solution

18. What is the power dissipated as Joule loss:

$$
\begin{aligned}
& \text { A. } \frac{B^{2} l^{2} v^{2}}{R} \\
& \text { B. } \frac{B^{2} l^{2} v^{2}}{R^{2}}
\end{aligned}
$$

C. $\frac{B^{2} l^{2} v}{R}$
D. $\frac{B l^{2} v}{R^{2}}$

Answer:

D Watch Video Solution

19. What is the peak current if the rms value of
current in an ac circuit is 10 A :
A. 15.6 A
B. 20.8 A
C. 11.5 A
D. 14.1 A

Answer:

- Watch Video Solution

20. Two batteries of emf ε_{1} and $\varepsilon_{2}\left(\varepsilon_{2}>\varepsilon_{1}\right)$
and internal resistances $\quad r_{1}$ and r_{2}
respectively are connected in parallel as
shown in figure.

A. The equivalent emf $\varepsilon_{e q}$ of the two cells is
between ε_{1} and ε_{2}, i.e. $\varepsilon_{1}<\varepsilon_{e q}<\varepsilon_{2}$.
B. The equivalent emf $\varepsilon_{e q}$ is smaller than ε_{1}
C. The $\varepsilon_{e q}$ is given by $\varepsilon_{e q}=\varepsilon_{1}+\varepsilon_{2}$ always.
D. $\varepsilon_{e q}$ is independent of internal
resistances r_{1} and r_{2}.

Answer:

D Watch Video Solution

21. Electric field intensity' at point P due to 'charge distributed over a sphere is: '

A. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$
B. $E=\frac{\sigma R^{2}}{\varepsilon_{0} r^{2}}$
C. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{r}{q}$
D. $\mathrm{E}=0$

Answer:

D Watch Video Solution

22. What is the flux through two opposite
faces of the cube when a charge q_{0} is placed at
the centre of the cube?
A. $\frac{q_{0}}{\varepsilon_{0}}$
B. 0
C. $\frac{q_{0}}{3 \varepsilon_{0}}$
D. $\frac{q_{0}}{6 \varepsilon_{0}}$

Answer:

D Watch Video Solution

23. A circular coil of area $200 \mathrm{~cm}^{2}$ and 25 turns
rotate about its vertical diameter with angular
speed of $20 \mathrm{~m} / \mathrm{s}$ in a uniform horizontal
magnetic field of magnitude 0.05 T. Maximum voltage induced by the coil is:
A. 1.5.V
B. 0.5 V
C. 2.0 V
D. 2.5 V

Answer:
(Watch Video Solution
24. Potentiometer can be used to measure:
A. internal resistance of the cell
B. emf of the cell
C. both (a) and (b)
D. drift speed

Answer:

25. Voltage V is applied to a capacitor of
capacitance C. It is then connected in parallel
with a series combination of two uncharged
capacitors each of capacitance C. The charge
that flows through the connecting wires is
A. CV
B. Zero
C. $\frac{C V}{3}$
D. $\frac{2 C V}{3}$

Section B

1. Find out \vec{E} at $\mathrm{x}=4$ if the potential at a point x due to some charges situated on x-axis is $v_{(x)}=\frac{20}{\left(x^{2}-4\right)} V$:
A. $\frac{9}{10} V / \mu m$
B. $\frac{18}{12} V / \mu m$
C. $\frac{80}{120} V / \mu m$

D. $\frac{10}{9} V / \mu m$

Answer:

D Watch Video Solution

2. A circular coil of radius 8 cm with current 6 A
has 30 turns. It is suspended vertically in a
uniform horizontal magnetic field of 1 T . which makes an angle of 60° with normal of the coil.

The magnitude of counter torque applied to prevent the coil from turning will be:
A. $3 \mathrm{~N}-\mathrm{m}$
B. 3.9 Nm
C. 3.133 Nm
D. 0

Answer:

- Watch Video Solution

3. The emf of the battery is equal to its terminal potential difference.
A. only when the battery is being charged
B. only when the large current is in the battery
C. only when there is no current in the battery.

D. under all conditions

Answer:

D Watch Video Solution
4. The current passing through a choke coil of self-inductance 5 H is decreased at the rate of
$2 \mathrm{~A} / \mathrm{s}$. The induced emf developed across the coil is:
A. 10 V
B. -10 V
C. 2.5 V

$$
\text { D. }-2.5 \mathrm{~V}
$$

Answer:

5. The magnetic flux linked with the coil is given by $\phi=5 t^{2}+3 t+16$. The induced emf in the coil in the fourth second will be:
A. 10 V
B. -10 V
C. 43 V
D. -43 V

Answer:
6. Find the new capacitance if two dielectric of dielectric constant 4 and 6 are filled in a capacitor of capacitance $1 \mu F$

A. $4 \mu F$
B. $10 \mu F$

C. $5 \mu F$

D. $7 \mu F$

Answer:

- Watch Video Solution

7.

Coulomb force $\left(\vec{F}_{12}\right)$ in vector form is:

$$
\text { A. } \frac{1}{4 \pi \varepsilon_{0}} \times \frac{q_{1} q_{2}}{r_{12}} \hat{r}_{12}
$$

$$
\begin{aligned}
& \text { B. } \frac{1}{4 \pi \varepsilon_{0}} \times \frac{q_{1} q_{2}}{q_{12}^{3}} \hat{r}_{12} \\
& \text { C. } \frac{1}{4 \pi \varepsilon_{0}} \times \frac{q_{1} q_{2}}{q_{12}^{2}} \hat{r}_{12} \\
& \text { D. } \frac{1}{4 \pi \varepsilon_{0}} \times \frac{q_{1} q_{2}}{r_{12}} \hat{r}_{12}
\end{aligned}
$$

Answer:

D Watch Video Solution

8. Where is the energy stored in a capacitor?

A. Region outside the first plate
B. Region between the plates

C. Region outside the second plate

D. No energy can be stored

Answer:

D Watch Video Solution

9. Five equal capacitors are connected in series
and have net capacitance C_{1} and when connected in parallel, they have capacitance
C_{2}. The value of $\frac{C_{1}}{C_{2}}$:
A. $\frac{1}{25}$
B. $\frac{1}{15}$
C. $\frac{1}{5}$
D. 1

Answer:

D Watch Video Solution
10. The potential differences across the resistance, capacitance and inductance are
$80 \mathrm{~V}, 40 \mathrm{~V}$ and 100 V respectively in an L-C-R circuit. The power factor of this circuit is
A. 1
B. 0.8
C. 0.5
D. 0.4

Answer:

D Watch Video Solution
11. Consider a simple circuit shown in Fig. stands for a variable resistance R'R' can vary
from Ro to infinity. r is internal resistance of
the battery $\left(r \ll R<R_{0}\right)$

A. Potential drop across $A B$ is nearly constant as R^{\prime} is varied.
B. Current through R^{\prime} is nearly a constant as R^{\prime} is varied.
C. Current I depends sensitively on R'.
D. $1 \geq V /(r+R)$ always.

Answer:

- Watch Video Solution

12. To rotate a bar magnet from. 0° to 120°, the work done is:
A. 1 MB
B. $\frac{1}{2} \mathrm{MB}$
C. $\frac{2}{3} \mathrm{MB}$
D. $\frac{3}{2} \mathrm{MB}$

Answer:

D Watch Video Solution
13. The horizontal component of earth's magnetic field is 0.26 and vertical component is 0.52 G . The angle of dip will be:
A. 0°
B. 45°
C. 60°
D. 90°

Answer:

14. A rectangular loop $A B C D$ ' with movable arm
$A B$ of length 10 cm and resistance 2Ω is placed in a uniform magnetic field of 0-1 T. The field is perpendicular to the plane of the loop. The resistance of arms $C B, B A$ and $C D$ is negligible.

What is
the current induced in the loop when $P Q$ is moving with the velocity of $20 \mathrm{~ms}^{-1}$
A. 0.1 A
B. 0.2 A
C. 0.3 A
D. 0.4 V

Answer:

D Watch Video Solution

15. A source of an alternating potential $V=200$
$\sin (100 \pi t) \mathrm{V}$ is connected with a resistance of
20Ω Time taken by current to change from its peak value to rms value is:
A. 0.52 s
B. $25 \times 10^{-3} s$
C. 0.2 s
D. $2.5 \times 10^{-3} s$

Answer:
(Watch Video Solution
16. Coefficient of coupling is given by:

$$
\begin{aligned}
& \text { A. } k=\frac{M}{L_{1} L_{2}} \\
& \text { B. } k=\frac{M}{\sqrt{L_{1} L_{2}}} \\
& \text { C. } k=\frac{L_{1} L_{2}}{\sqrt{M}} \\
& \text { D. Both (a) and (c) }
\end{aligned}
$$

Answer:

17. For 2 hr , a television of 100 W is used. Find the units used:
A. 20 kW
B. 2 kW
C. 0.2 kW
D. 2 kW

Answer:

D Watch Video Solution
18. Assertion (A): The dimension formula for product of conductance and resistance is same as of dielectric constant.

Reason (R): Both have dimensions of time constant.
A. Both (A) and (R) are true and (R) is the
correct explanation of (A).
B. Both (A) and (R) are true but (R) is not
the correct explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer:

D Watch Video Solution

19. Assertion (A): 1 m wire is used to make meter bridge useful.

Reason (R): A bridge cannot be made out of shorter wire.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not the correct explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer:

D Watch Video Solution

20. Assertion (A): We use thick wire in the secondary coil of a step down transformer to reduce the production of heat.

Reason (R): If the plane of armature is parallel to the lines of force of magnetic field the magnitude of induced EMF is maximum.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not the correct explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

- Watch Video Solution

21. Assertion (A): For phenomena of resonance both $\mathrm{L} \cdot \&$ Care to be present in circuit.

Reason (R): Voltage across L and C cancel each
other and the total source voltage appearing across our causes resonance.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not the correct explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer:

D Watch Video Solution

22. In a series $L C R$ circuit, at resonant frequency.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not the correct explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer:

D Watch Video Solution

1. In the given figure charge on capacitor C_{2} is:

A. $22 \mu C$
B. $44 \mu C$
C. $18 \mu C$
D. $36 \mu C$

Answer:

- Watch Video Solution

As shown in the figure, four bulb consume same power. The resistance of bulb 1 is 36Ω.

The resistance of bulb 3 is:
А. 9Ω
B. 18Ω
C. 12Ω
D. 4Ω

Answer:

D Watch Video Solution

3. Magnetic field \vec{B} is produced by a current.

On the basis of this concept, Maxwell explained the existence of EM. Magnetic field
is generally directed towards circumference of circular loop and ris the radius whose plane is perpendicular to direction of current carrying wire, which is centered symmetrically with respect to the wire

Conduction of current due to:
A. Current through conductor
B. Current through loop
C. Current on surface
D. Current between capacitor

Answer:

D Watch Video Solution

