©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - EDUCART PUBLICATION

SAMPLE PAPER SELF- ASSESSMENT -

(10)

Section A

1. A galvanometer can be converted into an ammeter by connecting
A. Connecting a large resistance in series
B. Connecting a small resistance in series
C. Connecting a large resistance in parallel
D. Connecting a small resistance in parallel

Answer:

D Watch Video Solution

2. At a place, the horizontal component of earth's magnetic field is B and angle of dip is
60°. What is the value of horizontal
component of earth's magnetic field at equator?
A. 0°
B. 45°
C. 60°
D. 90°

Answer:
(Watch Video Solution
3. A toroid of n turns, mean radius R and crosssectional radius a carries current I. It is placed on a horizontal table taken as $x-y$ plane. Its magnetic moment \vec{M}
A. Points along the axis of toroid
B. points radially outward
C. is zero
D. is non-zero' and points in Z direction by
symmetry.

Answer:

D Watch Video Solution

4. What is the potential energy of the equal positive point charges of $1 \mu C$ each held $1 m$ apart in air?
A. 0
B. 1 ev
C. 1J
D. $9 \times 10^{-3} J$

Answer:

D Watch Video Solution

5. Electric flux through a closed surface in free
space enclosing a charge q is
A. $\frac{q}{4 \varepsilon_{0}}$
B. $\frac{q}{6 \varepsilon_{0}}$
C. $\frac{q}{3 \varepsilon_{0}}$
D. $\frac{q}{8 \varepsilon_{0}}$

Answer:

- Watch Video Solution

6. Two wires of the same material having radii
in the ratio $1: 2$, carry currents in the ratio $4: 1$
. The ratio of drift velocities of electrons in
them is:
A. 2:1
B. 1:1
C. 1:4
D. 16:1

Answer:

D Watch Video Solution

Section B

1. Two charged particles traverse identical
helical paths in a completely opposite sense in
a uniform magnetic field $\vec{B}=B_{0} \widehat{K}$
A. The charge to mass ratio satisfy
B. They have equal Z-components of

momenta

C. They necessarily represent a particleanti
particle pair

D. They must have equal charges

Answer:

- Watch Video Solution

2. If at a certain place B_{H} and B_{V} are horizontal and vertical components of earth's magnetic field respectively and δ is the angle of dip at the same place then
A. 45°
B. 60°
C. 90°
D. 30°

Answer:
3. A capacitor has plate area A and distance between the plates d. If a metal sheet is inserted of thickness $\frac{d}{3}$ the ratio of old and new capacitance is:
A. $2: 3$
B. 1:1
C. 3:1
D. 4:1

Answer:

D Watch Video Solution

4. A bar magnet of length 3 cm has points A
and B along its axis at distance of 24 cm and

48 cm on the opposite sides. Ratio of magnetic field at these points will be
A. 3
B. 8
C. $\frac{1}{2} \sqrt{2}$
D. 4

Answer:

D Watch Video Solution

5. A copper rod of length I is rotated about one end perpendicular to the uniform magnetic field B with constant angular velocity ω. The induced e.m.f. between its two ends is
A. $B \omega l^{2}$
B. $\frac{1}{2} B \omega l^{2}$
C. $\frac{1}{4} B \omega l^{2}$
D. $2 B \omega l^{2}$

Answer:

D Watch Video Solution

6. Give expression for average value of a.c.
voltage $V=V_{0} \sin \omega t$ over interval $t=0$ to

$$
t=\frac{\pi}{\omega}
$$

A. $\frac{V_{0}}{\pi}$
B. $\frac{-V_{0}}{\pi}$
C. $\frac{V_{0}}{2 \pi}$
D. $\frac{2 V_{0}}{\pi}$

Answer:

D Watch Video Solution

7. Internal resistance of a cell of 4 V , which gives 0.2 A current through resistance of 10Ω :
A. 100Ω
B. 1Ω
C. 10Ω
D. 0.1Ω

Answer:

D Watch Video Solution

8. Explain with the help of a graph the variation of conductivity with temperature of a metallic conductor.

Answer:

9. t2

A. $2 H$
B. $\frac{H}{2}$
C. $H \sqrt{\frac{3}{2}}$
D. $\frac{2 H}{\sqrt{3}}$

Answer:

- Watch Video Solution

10. A conducting square loop of side L and resistance R moves in its plance with a uniform velocity v perpendicular to one of its sides. A magnetic induction B, constant in time and space, pointing perpendicular and into the plane of the loop exists everywhere.

The current induced in the loop is

A. $\frac{B l v}{R}$ clockwise
B. $\frac{2 B l v}{R}$ anticlockwise
c. $\frac{B l v}{R}$ anticlockwise
D. 0

Answer:

D Watch Video Solution

11. In an LCR. series circuit the resonating frequency can be decreased by -
A. Iron core of inductor should be removed
B. Another capacitor should be added in
parallel to first
C. Dielectric in the capacitor should be
removed
D. The generator frequency should be reduced.

Answer:

12. In a Wheatstone's bridge, three resistances
P, Q and R connected in the three arms and the
fourth arm is formed by two resistances
S_{1} and S_{2} connected in parallel. The condition for the bridge to be balanced will be

$$
\begin{aligned}
& \text { A. } \frac{P}{Q}=\frac{R}{S_{1}+S_{2}} \\
& \text { B. } \frac{P}{Q}=\frac{2 R}{S_{1}+S_{2}} \\
& \text { C. } \frac{P}{Q}=\frac{R}{S_{1}+S_{2}} \\
& \text { D. } \frac{P}{Q}=R \frac{\left(S_{1}+S_{2}\right)}{S_{1} S_{2}}
\end{aligned}
$$

13. A cell of emf E and internal resistance r is
connected across an external resistance R.
Plot a graph showing the variation o $P . D$.
Across R, verses ' R '.

Answer:

- Watch Video Solution

14. In an ammeter, 4% of the main current is
passing through the galvanometer. If shunt
resistance is 5Ω, then resistance of galvanometer will be
A. 60Ω
B. 540Ω
C. 120Ω
D. 480Ω

Answer:
(Watch Video Solution
15. The magnetic moment associated with the solenoid if it is closely wounded of 2000 turns and area of cross section is $1.6 \times 10^{-4} \mathrm{~m}^{2}$. It is carrying a current of 4 A allowing it to turn in horizontal plane is given by:
A. $1.5 A m^{2}$
B. $2 A m^{2}$
C. $1.28 A m^{2}$
D. $1.6 A \mathrm{~m}^{2}$

Answer:

- Watch Video Solution

16. Assertion : A step-up transformer changes
a low voltage into a high voltage.
Reason : This violate the law of conservation of energy.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).

B. Both (A) and (R) are true but (R) is not

the correct explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer:

- Watch Video Solution

17. Assertion: An inductance and a resistance are connected in series with an $A C$ circuit. In this circuit the current and the potential difference across the resistance lag behind potential difference across the inductance by
an angle $\pi / 2$.

Reason: In $L R$ circuit voltage leads the current by phase angle which depends on the value of inductance and resistance both.
A. Both (A) and (R) are true and (R) is the correct explanation of (A).
B. Both (A) and (R) are true but (R) is not
the correct explanation of (A).
C. (A) is true but (R) is false.
D. (A) is false and (R) is also false.

Answer:

- Watch Video Solution

