

MATHS

BOOKS - NAGEEN PRAKASHAN ENGLISH

VECTORS

Miscellaneous Exercise

1. Write down a unit vector in XY-plane, making an angle of 30 with the positive direction of x-

3. A girl walks 4 km towards west, and then she walks 3 km in a direction 30^0 east of north and

stops. Determine the girls displacement from

her initial point of departure.

5. Find the value of x for which $x\left(\hat{i}+\hat{j}+\hat{k}
ight)$

is a unit vector.

6. Find a vector of magnitude 5 units and parallel to the resultant of the vectors $\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{b} = \hat{i} - 2\hat{j} + \hat{k}$

7. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and
 $\overrightarrow{c} = \hat{i} - 2\hat{j} + \hat{k}$ find a unit vector parallel to
the vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$.

8. Show that the points A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7) are collinear, and find the ratio in which B divides AC.

Watch Video Solution

9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\left(2\overrightarrow{a}+\overrightarrow{b}\right)$ and (

 $\overrightarrow{a} - \overrightarrow{3b}$ respectively, externally in the ratio

1:2.Also, show that P is the mid-point of the

line segment RQ.

Watch Video Solution

10. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to one of its diagonals. Also, find its area.

11. Show that the direction cosines of a vector

equally inclined to the axes OX, OY and OZ are

$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}.$$

13. The scalar product of the vector $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $\overrightarrow{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\overrightarrow{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of λ and hence find the unit vector along $\overrightarrow{b} + \overrightarrow{\cdot}$

14. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three mutually perpendicular vectors of equal magniltgude, prove that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined with vectors \overrightarrow{a} , \overrightarrow{b} , and $\overrightarrow{\cdot}$ also find the angle.

and only if
$$\overrightarrow{a}, \overrightarrow{b}$$
 are perpendicular, given
 $\overrightarrow{a} \neq \overrightarrow{0}, \overrightarrow{b} \neq \overrightarrow{0}$

16. If
$$\theta$$
 is the angle between two vectors
 $\overrightarrow{a} and \overrightarrow{b}$, then $\overrightarrow{a} \overrightarrow{b} \ge 0$ only when '0
A. $0 < \theta < \frac{\pi}{2}$
B. $0 \le \theta \le \frac{\pi}{2}$
C. $0 < \theta < \pi$
D. $0 \le \theta \le \pi$

Answer: B

17. Let
$$\overrightarrow{a}$$
 and \overrightarrow{b} be two unit vectors and α be the angle between them, then $\overrightarrow{a} + \overrightarrow{b}$ is a unit vectors, if

A.
$$heta=rac{\pi}{4}$$

B. $heta=rac{\pi}{3}$
C. $heta=rac{\pi}{2}$
D. $heta=rac{2\pi}{3}$

Answer: D

A. 0

B. -1

C. 1

D. 3

Answer: C

19. If θ is the angle between any two vectors \overrightarrow{a} and \overrightarrow{b} , then $\left|\overrightarrow{a}, \overrightarrow{b}\right| = \left|\overrightarrow{a} \times \overrightarrow{b}\right|$ when θ is equal to (a) 0 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (d) π

A. 0

B. $\frac{\pi}{4}$ C. $\frac{\pi}{2}$ D. π

Answer: b