©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - XII BOARDS PREVIOUS YEAR

QUESTION PAPER 2022 TERM 1 SET 1

Section A

1. Differential of $\log \left[\log \left(\log x^{5}\right)\right]$ w.r.t. x is

5
A.

$$
x \log \left(x^{5}\right) \log \left(\log x^{5}\right)
$$

$$
\begin{aligned}
& \text { B. } \frac{5}{x \log \left(\log x^{5}\right)} \\
& \text { C. } \frac{5 x^{4}}{\log \left(x^{5}\right) \log \left(\log x^{2}\right)} \\
& \text { D. } \frac{5 x^{4}}{\log x^{5} \log \left(\log x^{5}\right)}
\end{aligned}
$$

Answer:

D Watch Video Solution

2. The number of all possible matrices of order 2×3 with each entry 1 or 2 is
A. 16
B. 6
C. 64
D. 24

Answer:

- Watch Video Solution

3. A function $f: R \rightarrow R$ is defined as
$f(x)=x^{3}+1$. Then the function has
A. no minimum value
B. no maximum value
C. both maximum and minimum values
D. neither maximum value nor minimum
value

Answer:

D Watch Video Solution

4. if $\sin y=x \cos (a+y)$, then $\frac{d x}{d y}$ is
A. $\frac{\cos a}{\cos ^{2}(a+y)}$
B. $\frac{-\cos a}{\cos ^{2}(a+y)}$
C. $\frac{\cos a}{\sin ^{2} y}$
D. $\frac{-\cos a}{\sin ^{2} y}$

Answer:

- Watch Video Solution

5. The points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$, where tangent is parallel to x-axis are
A. $(\pm 5,0)$
B. $(0, \pm 5)$
C. $(0, \pm 3)$
D. $(\pm 3,0)$

Answer:

D Watch Video Solution

6.

Three
points
$P(2 x, x+3), Q(0, x)$ and $R(x+3, x+6)$
A. 0
B. 2
C. 3
D. 1

Answer:

- Watch Video Solution

7. The principal valus
$\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is
A. $\frac{\pi}{12}$
B. π
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer:

D Watch Video Solution

8. If $\left(x^{2}+y^{2}\right)^{2}=x y$, then $\frac{d y}{d x}$ is

$$
\text { A. } \frac{y+4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x}
$$

B. $\frac{y-4 x\left(x^{2}+y^{2}\right)}{}$

$$
x+4\left(x^{2}+y^{2}\right)
$$

C. $\frac{y-4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)-x}$
D. $\frac{4 y\left(x^{2}+y^{2}\right)-x}{y-4 x\left(x^{2}+y^{2}\right)}$

Answer:

D Watch Video Solution

9. If the matrix A is both symmetric and skew-
symmetric, then
A. Diagonal matrix

B. Zero square matrix

C. Square matrix
D. Identity matrix

Answer:

D Watch Video Solution

10. Let set $X=\{1,2,3\}$ and a relation R is defined in X as $: \mathrm{R}=\{(1,3),(2,2),(3,2)\}$, then minimum ordered pairs which should be
added in relation R to make it reflexive and

symmetric are

> A. $\{(1,1),(2,3),(1,2)\}$
> B. $\{(3,3),(3,1),(1,2)\}$
> C. $\{(1,1),(3,3),(3,1),(2,3)\}$
> D. $\{(1,1),(3,3),(3,1),(1,2)\}$

Answer:

D Watch Video Solution

11. A Linear Programming Problem is as follows

Minimise $z=2 x+y$
subject to the constraints
$x \geq 3, x \geq 9, y \geq 0$
$x-y \geq 0, x+y \leq 14$

The feasible region has
A. 5 corner points including $(0,0)$ and $(9,5)$
B. 5 corner points including $(7,7)$ and $(3,3)$
C. 5 corner points including (14,0) and (9 ,
0)
D. 5 corner points including $(3,6)$ and $(9,5)$

Answer:

D Watch Video Solution

12. The function $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{e^{3 x}-e^{-5 x}}{x}, & \text { if } x \neq 0 \\ k, & \text { if } x=0\end{cases}$
is continuous at $x=0$ for the value of k, as
A. 3
B. 5
C. 2
D. 8

Answer:

- Watch Video Solution

13. If $C_{i j}$ denotes the cofactor of element $p_{i j}$ of
the matrix $P=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4\end{array}\right]$ then the
value of $C_{31} . C_{23}$ is
A. 5
B. 24
C. -24
D. -5

Answer:

D Watch Video Solution

14. The function $y=x^{2} e^{-x}$ is decreasing in
the interval
A. $(0,2)$
B. $(2, \infty)$
C. $(-\infty, 0)$
D. $(-\infty, 0) \cup(2, \infty)$

Answer:

D Watch Video Solution

15. If $R=\left\{(x, y), x, y, \in Z, x^{2}+y^{2} \leq 4\right\}$ is
a relation in set Z, then domain of R is
A. $\{0,1,2\}$

$$
\text { B. }\{-2,-1,0,1,2\}
$$

C. $\{0,-1,-2\}$
D. $\{-1,0,1\}$

Answer:

D Watch Video Solution
16. The system of linear equations
$5 x+k y=5$,
$3 x+3 y=5$,
will be consistent if
A. $k \neq-3$
B. $k=-5$
C. $k=5$
D. $k \neq 5$

Answer:

D Watch Video Solution
17. The equation of the tangent to the curve $y\left(1+x^{2}\right)=2-x$. Where is crosses the x axis is

$$
\text { A. } x-5 y=2
$$

B. $5 x-y=2$
C. $x+5 y=2$
D. $5 x+y=2$

Answer:

D Watch Video Solution
18. If $\left[\begin{array}{cc}3 c+6 & a-d \\ a+d & 2-3 b\end{array}\right]=\left[\begin{array}{cc}12 & 2 \\ -8 & -4\end{array}\right]$ are equal, than value of $a b-c d$ is
A. 4
B. 16
C. -4
D. -16

Answer:

D Watch Video Solution
19. The principal value of $\tan ^{-1}\left(\tan \frac{9 \pi}{8}\right)$ is
A. $\frac{\pi}{8}$
B. $\frac{3 \pi}{8}$
C. $-\frac{\pi}{8}$
D. $-\frac{3 \pi}{8}$

Answer:

- Watch Video Solution

20.

For two matrices

$$
\left[\begin{array}{cc}
3 & 4 \\
-1 & 2 \\
0 & 1
\end{array}\right] \text { and } Q^{T}=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right] \mathrm{P}-\mathrm{Q} \text { is }
$$

$$
\begin{aligned}
& \text { A. }\left[\begin{array}{cc}
2 & 3 \\
-3 & 0 \\
0 & -3
\end{array}\right] \\
& \text { B. }\left[\begin{array}{cc}
4 & 3 \\
-3 & 0 \\
-1 & -2
\end{array}\right] \\
& \text { C. }\left[\begin{array}{cc}
4 & 3 \\
0 & -3 \\
-1 & -2
\end{array}\right]
\end{aligned}
$$

$$
\text { D. }\left[\begin{array}{cc}
2 & 3 \\
0 & -3 \\
0 & -3
\end{array}\right]
$$

Answer:

Section B

1. The function $f(x)=2 x^{3}-15 x^{3}+36 x+6$
is increasing in the interval
A. $(-\infty, 2) \cup(3, \infty)$
B. $(-\infty, 2)$
C. $(-\infty, 2] \cup[3, \infty)$
D. $[3, \infty)$

Answer:

D Watch Video Solution

2.

$x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$,
then $\frac{d y}{d x}$ is
A. $\frac{\cos \theta+\cos 2 \theta}{\sin \theta-\sin 2 \theta}$
B. $\frac{\cos \theta-\cos 2 \theta}{\sin 2 \theta-\sin \theta}$
C. $\frac{\cos \theta-\cos 2 \theta}{\sin \theta-\sin 2 \theta}$
D. $\frac{\cos 2 \theta-\cos \theta}{\sin 2 \theta+\sin \theta}$

Answer:

- Watch Video Solution

3. What is the domain of the function

$$
\cos ^{-1}(2 x-3) ?
$$

A. $(1,2)$
B. $(-1,1)$
C. $[1,2]$
D. $[4,2]$

Answer:

- Watch Video Solution

4. A matrix $\mathrm{A}=\left[a_{i j}\right]_{3 \times 3}$ is defined by
$a_{i j}= \begin{cases}2 i+3 j & , i<j \\ 5 & , i=j \\ 3 i-2 j & , i>j\end{cases}$
The number of elements in A which are more than 5 , is
A. 3
B. 4
C. 5
D. 6

Answer:

- Watch Video Solution

5. If a function f defined by
$f(x)= \begin{cases}\frac{k \cos x}{\pi-2 x} & , \text { if } x \neq \frac{\pi}{2} \\ 3 & , \text { if } x=\frac{\pi}{2}\end{cases}$
is continuous at $x=\frac{\pi}{2}$, then the value of k is
A. 2
B. 3
C. 6
D. -6

Answer:
(D) Watch Video Solution
6. For the matrix $X=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$, then find $\left(X^{2}-X\right)$ is
A. 21
B. 31
C. I
D. 5 I

Answer:

D Watch Video Solution

7. Let $\mathrm{X}=\left\{x^{2}: x \in N\right\}$ and the function $f: N \rightarrow X$ is defined by $f(x)=x^{2}, x \in N$.

Then this function is
A. injective only
B. not bijective
C. surjective only
D. bijective

Answer:

D Watch Video Solution

8. The corner points of the feasible region for
a linear programming problem are $P(0,5)$,
$Q(1,5), R(4,2)$ and $S(12,0)$. The minimum value of
the objective function $Z=2 x+5 y$ is the point
A. P
B. Q
C. R
D. S

Answer:

D Watch Video Solution
9. The equation of the normal to the curve $a y^{2}=x^{3}$ at the point $\left(a m^{2}, a m^{3}\right)$ is
A. $2 y-3 m x+a m^{3}=0$
B. $2 x+3 m y-3 a m^{4}-a m^{2}=0$
C. $2 x+3 m y+3 a m^{4}-2 a m^{2}=0$
D. $2 x+3 m y-3 a m^{4}-2 a m^{2}=0$

Answer:

D Watch Video Solution

10. If A is a square matrix of order 3 and $|A|=-5$
then $|\operatorname{adj} A|$ is
A. 125
B. -25
C. 25
D. ± 25

Answer:

D Watch Video Solution
11. Write the simplest form

$$
\tan ^{-1}(\sqrt{1+x}-\sqrt{1-x}) \quad-1
$$

A. $\frac{\pi}{4}-\frac{x}{2}$
B. $\frac{\pi}{1}+\frac{x}{2}$
C. $\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x$
D. $\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x$

Answer:

12.

If for
the matrix
$A=\left[\begin{array}{cc}\alpha & -2 \\ -2 & \alpha\end{array}\right],\left|A^{3}\right|=125$, then the value of α is
A. ± 3
B. -3
C. ± 1
D. -1

Answer:

- Watch Video Solution

13. If $y=\sin \left(m \sin ^{-1} x\right)$. then which one of the following equations is true?

$$
\begin{aligned}
& \text { A. }\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+m^{2} y=0 \\
& \text { B. }\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0 \\
& \text { C. }\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-m^{2} y=0 \\
& \text { D. }\left(1+x^{2}\right) \frac{d^{2}}{d x^{2}}+x \frac{d y}{d x}-m^{2} x=0
\end{aligned}
$$

Answer:

D Watch Video Solution

14. Write the principal value of
$\tan ^{-1} \sqrt{(3)}-\cot ^{-1}-\sqrt{(3)}$.
A. π
B. $-\frac{\pi}{2}$
C. 0
D. $2 \sqrt{3}$

Answer:

- Watch Video Solution

15. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is
A. $e^{1 / e}$
B. e
C. $\left(\frac{1}{e}\right)^{1 / e}$
D. e^{e}

Answer:
(Watch Video Solution
16. Let matrix $X=\left[x_{i j}\right]$ is given by $x=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right]$. Then the matrix $Y=\left[m_{i j}\right]$, where $m_{i j}=$ Minor of $x_{i j}$, is
A. $\left[\begin{array}{ccc}7 & -5 & 3 \\ 19 & 1 & -11 \\ -11 & 1 & 7\end{array}\right]$
B. $\left[\begin{array}{ccc}7 & -19 & -11 \\ 5 & -1 & -1 \\ 3 & 11 & 7\end{array}\right]$
C. $\left[\begin{array}{ccc}7 & 19 & -11 \\ -3 & 11 & 7 \\ -5 & -1 & -1\end{array}\right]$
D. $\left[\begin{array}{ccc}7 & 19 & -11 \\ -1 & -1 & 1 \\ -3 & -11 & 7\end{array}\right]$

Answer:

D Watch Video Solution

17. A function $f: R \rightarrow R$ defined by
$f(x)=2+x^{2}$ is
A. not one-one
B. one-one
C. not onto
D. neither one-one nor onto

Answer:

D Watch Video Solution

18. A Linear Programming Problem is as follows

Maximise / Minimise objective function
$Z=2 x-y+5$

Subject to the constraints
$3 x+4 y \leq 60$
$x+3 y \leq 30$
$x \geq 0, y \geq 0$

If the corner points of the feasible region are
$A(0,10), B(12,6), C(20,0)$ and $O(0,0)$, then which of the following is true?
A. Maximum value of Z is 40
B. Minimum value of Z is -5
C. Difference of maximum and minimum
value of Z is 35
D. At two corner points, value of Z are equal

- Watch Video Solution

19. If $x=-4$ is a root of $\left|\begin{array}{ccc}x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x\end{array}\right|=0$, then the sum of the other two roots is
A. 4
B. -3
C. 2
D. 5
20. The absolute maximum value of the function $f(x)=4 x-\frac{1}{2} x^{2}$ in the interval $\left[-2, \frac{9}{2}\right]$ is
A. 8
B. 9
C. 6
D. 10

Section C

1. In a sphere of radius r, a right circular cone of height h having maximum curved surface area is inscribed. The expression for the square of curved surface of cone is

$$
\text { A. } 2 \pi^{2} r h\left(2 r h+h^{2}\right)
$$

$$
\text { B. } \pi^{2} h r\left(2 r h+h^{2}\right)
$$

$$
\begin{aligned}
& \text { C. } 2 \pi^{2} r\left(2 r h^{2}-h^{3}\right) \\
& \text { D. } 2 \pi^{2} r^{2}\left(2 r h-h^{2}\right)
\end{aligned}
$$

Answer:

D Watch Video Solution

2. The corner points of the feasible region determined by a set of constraints (linear inequlities) are $P(0,5), Q(3,5), R(5,0)$ and $S(4,1)$ and the objective function is $Z=a x+2$ by
where $a, b>0$. The condition on a and b such
that the maximum Z occurs at Q and S is .

$$
\begin{aligned}
& \text { A. } a-5 b=0 \\
& \text { B. } a-3 b=0 \\
& \text { C. } a-2 b=0 \\
& \text { D. } a-8 b=0
\end{aligned}
$$

Answer:

- Watch Video Solution

3. If curves $y^{2}=4 x$ and $x y=c$ cut at right angles, then the value of c is.
A. $4 \sqrt{2}$
B. 8
C. $2 \sqrt{2}$
D. $-4 \sqrt{2}$

Answer:

D Watch Video Solution
4. The inverse of the matrix $X=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$

$$
\begin{aligned}
& \text { A. } 24\left[\begin{array}{lll}
1 / 2 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1 / 4
\end{array}\right] \\
& \text { B. }-\frac{1}{24}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \text { C. } \frac{1}{24}\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& \text { D. }\left[\begin{array}{lll}
1 / 2 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1 / 4
\end{array}\right]
\end{aligned}
$$

Answer:

D Watch Video Solution
5. For an L.P.P. the objective function is
$Z=4 x+3 y$ and the feasible region determined by a set of constrains (linear inequations) is shown in the graph.

Which one of the following statements is true ?
A. Maximum value of Z is at R
B. Maximum value of Z is at Q.
C. Value of Z at R is less than the value at P

D. Value of Z at Q is the less the value

 of at R.
Answer:

D Watch Video Solution

6. In a residential society composing of 100
houses. there were children between the ages
of 10-15 years They were inspired by their teachers to start composting to ensure that
biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, child convinced the Residents welfare association to do it as a society initiative. For thus they identified a square area in the local park Local authorities charged amount of ₹ 50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out $250 \mathrm{~m}^{3}$ and he charged ₹ $400(\text { depth })^{2}$ Association will like to have minimum cost.

Based on this information, answer the any of
the following questions.

Let side of square plot is x m and its depth is h

metres, then cost c for the pit is

$$
\begin{aligned}
& \text { A. } \frac{50}{h}+400 h^{2} \\
& \text { B. } \frac{12500}{h}+400 h^{2} \\
& \text { C. } \frac{250}{h}+h^{2} \\
& \text { D. } \frac{250}{h}+400 h^{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

7. In a residential society composing of 100 houses. there were children between the ages
of 10-15 years They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, child convinced the Residents welfare association to do it as a society
initiative. For thus they identified a square area in the local park Local authorities charged amount of ₹ 50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out $250 \mathrm{~m}^{3}$ and he charged ₹ 400 (depth 2 Association will like to have minimum cost.

Based on this information, answer the any of the following questions.

Value of h (in m) for which $\frac{d e}{d h}=0$ is
A. 1.5
B. 2
C. 2.5
D. 3

Answer:

8. In a residential society composing of 100 houses. there were children between the ages
of 10-15 years They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, child convinced the Residents welfare association to do it as a society initiative. For thus they identified a square area in the local park Local authorities
charged amount of ₹ 50 per square metre for space so that there is no misuse of the space
and Resident welfare association takes it seriously. Association hired a labourer for digging out $250 \mathrm{~m}^{3}$ and he charged ₹ $400(\text { depth })^{2}$ Association will like to have minimum cost.

Based on this information, answer the any of the following questions.

$\frac{d^{2} c}{d h^{2}}$ is given by

$$
\text { A. } \frac{25000}{h^{3}}+800
$$

> B. $\frac{500}{h^{3}}+800$
> C. $\frac{100}{h^{3}}+800$
> D. $\frac{500}{h^{3}}+2$

Answer:

- Watch Video Solution

9. In a residential society composing of 100
houses. there were children between the ages
of 10-15 years They were inspired by their teachers to start composting to ensure that
biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, child convinced the Residents welfare association to do it as a society initiative. For thus they identified a square area in the local park Local authorities charged amount of ₹ 50 per square metre for space so that there is no misuse of the space and Resident welfare association takes it seriously. Association hired a labourer for digging out $250 \mathrm{~m}^{3}$ and he charged ₹ $400(\text { depth })^{2}$ Association will like to have minimum cost.

Based on this information, answer the any of
the following questions.

Value of x (in m) for minimum cost is
A. 5
B. 10
C. $5 \sqrt{5}$
D. 10

- Watch Video Solution

10. In a residential society composing of 100 houses. there were children between the ages
of $10-15$ years They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/her house, child convinced the Residents welfare association to do it as a society initiative. For thus they identified a square area in the local park Local authorities
charged amount of ₹ 50 per square metre for space so that there is no misuse of the space
and Resident welfare association takes it seriously. Association hired a labourer for digging out $250 \mathrm{~m}^{3}$ and he charged ₹ 400(depth) ${ }^{2}$ Association will like to have minimum cost.

Based on this information, answer the any of the following questions.

Total minimum cost of digging the pit (in \%) is
A. 4100
B. 7500
C. 7850
D. 3220

Answer:

- Watch Video Solution

