©゙doubtnut

MATHS

BOOKS - XII BOARDS PREVIOUS YEAR

QUESTION PAPER 2022 TERM 1 SET 2

Section A

1. A relation R is defined on N. which of the following is the reflexive relation?
A. $R=\{(x, y): x>y, x, y \in N\}$
B. $R=\{(x, y): x+y=10, x, y \in N\}$
C. $R=\{(x, y): x y$ is the square number $, \mathrm{x}, \mathrm{y} \in N\}$
D. $R=\{(x, y): x+4 y=10, x, y \in N\}$

Answer:

D Watch Video Solution

2. The function $f: R \rightarrow R$ defined $\mathrm{f}(\mathrm{x})=4+3 \cos \mathrm{x}$ is,
A. bijective
B. one-one but not onto
C. onto but not one-one
D. neither one-one nor onto

Answer:

- Watch Video Solution

3. If $y=\cot ^{-1} x, x<0$, then :
A. $\frac{\pi}{2}<y \leq \pi$
B. $\frac{\pi}{2}<y<\pi$
C. $-\frac{\pi}{2}<y<0$
D. $-\frac{\pi}{2} \leq y<0$

Answer:

4. The number of functions defined from $\{1,2,3,4,5\} \rightarrow\{a, b\}$ which are one - one is :
A. 5
B. 3
C. 2
D. 0

Answer:

D Watch Video Solution

5. If $A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$, then $(\mathrm{A}-2 \mathrm{I})(\mathrm{A}-3 \mathrm{I})$ is equal to :
A. A
B. I
C. 51
D. O

Answer:

- Watch Video Solution

6. If P is 3×3 matrix such that $P^{\prime}=2 P+I$, where P^{\prime} is the
transpose of P, then :
A. $P=1$
B. $P=-I$
C. $P=21$
D. $P=-2 \mid$

Answer:

D Watch Video Solution

7. If order of matrix A is 2×3,of matrix B is 3×2, and of matrix C is 3×3, then which one of the following is not defined ?
A. $C\left(A+B^{\prime}\right)$
B. $C\left(A+B^{\prime}\right) '$
C. BAC
D. $C B+A^{\prime}$

Answer:

- Watch Video Solution

8. If $A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left|A^{3}\right|=27$ then the value of α is:
A. ± 1
B. ± 2
C. $\pm \sqrt{5}$
D. $\pm \sqrt{7}$

Answer:

D Watch Video Solution

9. If $\left|\begin{array}{lll}5 & 3 & -1 \\ -7 & x & -3 \\ 9 & 6 & -2\end{array}\right|=0$, then the value of x is:
A. 3
B. 5
C. 7
D. 9

Answer:

10. The inverse of $\left[\begin{array}{ll}-4 & 3 \\ 7 & -5\end{array}\right]$ is
A. $\left[\begin{array}{ll}-5 & 3 \\ 7 & -4\end{array}\right]$
B. $\left[\begin{array}{ll}5 & 3 \\ 7 & 4\end{array}\right]$
C. $\left[\begin{array}{ll}-5 & 7 \\ 3 & -4\end{array}\right]$
D. $\left[\begin{array}{ll}-5 & -3 \\ -7 & -4\end{array}\right]$

Answer:

D Watch Video Solution
11. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1\end{array}\right]$, then A^{-1} :
A. is A
B. is (-A)
C. is A^{2}
D. does not exist

Answer:

12. If the function $f(x)=\left\{\begin{array}{ll}3 x-8, \text { if } & x \leq 5 \\ 2 k, \text { if } & x>5\end{array}\right.$ is continuous, then the value of k is :
A. $\frac{2}{7}$
B. $\frac{7}{2}$
C. $\frac{3}{7}$
D. $\frac{4}{7}$

Answer:

13. The function $f(x)=[x]$, where $[x]$ is the greatest integer function that is less than or equal to x, is continuous at:
A. 4
B. -2
C. 1.5
D. 1

Answer:

14. If $y=\tan ^{-1}\left(e^{2 x}\right)$, then $\frac{d y}{d x}$ is equal to :
A. $\frac{2 e^{2 x}}{1+e^{4 x}}$
B. $\frac{1}{1+e^{4 x}}$
C. $\frac{2}{e^{2 x}+e^{-2 x}}$
D. $\frac{1}{e^{2 x}-e^{-2 x}}$

Answer:

D Watch Video Solution

15. If $y^{2}(2-x)=x^{3}$, then $\left(\frac{d y}{d x}\right)_{(1,1)}$ is equal to :
A. 2
B. -2
C. 3
D. $-\frac{3}{2}$

Answer:

D Watch Video Solution

16. The angle between the tangents to the curve

$$
y=x^{2}-5 x+6 \text { at the point }(2,0) \text { and }(3,0) \text { is: }
$$

A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. 0

Answer:

D Watch Video Solution

17. The interval, in which function $y=x^{3}+6 x^{2}+6$ is increasing, is :
A. $(-\infty,-4) \cup(0, \infty)$
B. $(-\infty, 4)$
C. $(-4,0)$
D. $(-\infty, 0) \cup(4, \infty)$

Answer:

- Watch Video Solution

18. The value of x for which $\left(x-x^{2}\right)$ is maximum, is:
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer:

- Watch Video Solution

19. If the corner points of the feasible region of an LPP are $(0,3),(3,2)$ and $(0,5)$, then the minimum value of Z
$=11 x+7 y$ is :
A. 21
B. 33
C. 14
D. 35

Answer:

20. The number of solutions of the system of inequations $x+2 y \leq 3,3 x+4 y \geq 12, x \geq 0, y \geq 1$ is :
A. 0
B. 2
C. finite
D. infinite

Answer:

1. The number of equivalence relations in the set (1,2,
$3)$ containing the elements $(1,2)$ and $(2,1)$ is :
A. 0
B. 1
C. 2
D. 3

Answer:

- Watch Video Solution

2. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=\frac{1}{x}$, for all $x \in R$. Then, f is :
A. one-one B. onto
C. bijective
D. not defined

Answer:

- Watch Video Solution

3. The function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is defined by
$f(n)= \begin{cases}\frac{n+1}{2} & , \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2} & , \text { if } \mathrm{n} \text { is even }\end{cases}$
The function f is :
A. bijective
B. one-one but not onto
C. onto but not one-one
D. neither one-one nor onto

Answer:

4. The value of $\sin ^{-1}\left(\cos \frac{13 \pi}{5}\right)$ is :
A. $-\frac{3 \pi}{5}$
B. $-\frac{\pi}{10}$
C. $\frac{3 \pi}{5}$
D. $\frac{\pi}{10}$

Answer:

- Watch Video Solution

5. If $\sin ^{-1} x>\cos ^{-1} \mathrm{x}$ then x is
A. $\left(-1,-\frac{1}{\sqrt{2}}\right)$
B. $\left(0, \frac{1}{\sqrt{2}}\right)$
C. $\left(\frac{1}{\sqrt{2}}, 1\right]$
D. $\left(-\frac{1}{\sqrt{2}}, 0\right)$

Answer:

- Watch Video Solution

6. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$, then $\mathrm{A}+\mathrm{A}^{\prime}=\mathrm{I}$ then the value of α is:
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. π
D. $\frac{3 \pi}{2}$

Answer:

- Watch Video Solution

7. The determinant $\left|\begin{array}{lcc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|$ is equal to :
A. $k\left(3 y+k^{2}\right)$
B. $3 y+k^{2}$
C. $3 y+k^{2}$
D. $k^{2}(3 y+k)$

Answer:

- Watch Video Solution

8. If $A=\left[\begin{array}{lll}1 & -2 & 4 \\ 2 & -1 & 3 \\ 4 & 2 & 0\end{array}\right]$ is the adjoint of a square matrix B , then B^{-1} is equal to :
A. $\pm A$
B. $\pm \sqrt{2} A$
C. $\pm \frac{1}{\sqrt{2}} B$
D. $\pm \frac{1}{\sqrt{2}} A$

Answer:

D Watch Video Solution

9. If $A=\left[\begin{array}{lll}1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1\end{array}\right]$, then $A^{5}-A^{4}-A^{3}+A^{2}$ is equal to :
A. 2 A
B. 3A
C. 4 A
D. 0

(-) Watch Video Solution

10. If $y=e^{-x}$, then $\frac{d^{2} y}{d x^{2}}$ is equal to :
A. $-y$
B. y
C. x
D. $-x$

Answer:

11. If $x=t^{2}+1, y=2$ at then $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{t}=\mathrm{a}$ is:
A. $-\frac{1}{a}$
B. $-\frac{1}{2 a^{2}}$
C. $\frac{1}{2 a^{2}}$
D. 0

Answer:

(D) Watch Video Solution
12. The function $f(x)\left\{\begin{array}{lll}x^{2} & \text { for } & x<1 \\ 2-x & \text { for } & x \geq 1\end{array}\right.$ is
A. not differentiable at $x=1$
B. differentiable at $x=1$
C. not continuous at $\mathrm{x}=1$
D. neither continuous nor differentiable at $x=1$

Answer:

D Watch Video Solution

13. The curve $x^{2}-x y+y^{2}=27$ has tangents parallel to x-axis at :
A. $(3,6)$ and $(-3,-6)$
B. (3,-6) and (-3, 6)
C. $(-3,-6)$ and $(3,-6)$
D. $(-3,6)$ and $(-3,-6)$

Answer:

D Watch Video Solution

14. A wire of length 20 cm is bent in the form of a sector of a circle. The maximum area that can be enclosed by the wire is :
A. 20 sq cm
B. 25 sq cm
C. 10 sq cm

D. 30 sq cm

Answer:

- Watch Video Solution

15. The function $(x-\sin x)$ decreases for :
A. all x
B. $x<\frac{\pi}{2}$
C. $0<x<\frac{\pi}{4}$
D. no value of x

D Watch Video Solution

16. If θ is the angle of intersection between the curves
$y^{2}=4 a x$ and $a y=2 x^{2}$ at ($\mathrm{a}, 2 \mathrm{a}$), then the value of $\tan \theta$ is :
A. $\frac{3}{5}$
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. $\frac{2}{5}$

Answer:

17. The maximum value of $z=3 x+4 y$ subject to the constraints $x \geq 0, y \geq 0$ and $x+y \leq 1$ is
A. 7
B. 4
C. 3
D. 10

Answer:

18. The feasible region of an LPP is given in the following figure :

Then, the constraints of the LPP are $x \geq 0, y \geq 0$ and
A. $2 x+y \leq 52$ and $x+2 y \leq 76$
B. $2 x+y \leq 104$ and $x+2 y \leq 76$
C. $x+2 y \leq 104$ and $2 x+y \leq 76$
D. $x+2 y \leq 104$ and $2 x+y \leq 38$

Answer:

- Watch Video Solution

19. If the minimum value of an objective function
$Z=a x+b y$ occurs at two points $(3,4)$ and $(4,3)$,
then :
A. $a+b=0$
B. $a=b$
C. $3 a=b$
D. $a=3 b$

Answer:

20. For the following LPP

Maximise $Z=3 x+4 y$
subject to constraints
$x-y \geq-1, x \leq 3$
$x \geq 0, y \geq 0$
the maximum value is :
A. 0
B. 4
C. 25
D. 30

Answer:

D Watch Video Solution

Section C

1. A relation R is defined on Z as :
$a R b$ if and only if $a^{2}-7 a b+6 b^{2}=0$
Then , R is :
A. reflexive and symmetric
B. symmetric but not reflexive
C. transitive but not reflexive
D. reflexive but not symmetric

Answer:

- Watch Video Solution

2.

The
value

A. 12
B. -12
C. 24
D. -24

Answer:

D Watch Video Solution

3.

$A=\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right] \cdot\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ then (A) $a=b \equiv-1$ (B) $a=\sin 2 \theta, b=\cos 2 \theta$ (C)
A. $a=1=b$
B. $a=\cos 2 \theta, b=\sin 2 \theta$
C. $a \sin 2 \theta, b=\cos 2 \theta$
D. $a=\cos \theta, b=\sin \theta$

Answer:

D Watch Video Solution

4. The normal to the curve $3 y=6 x-5 x^{3}$ at the point $\left(1, \frac{1}{3}\right)$ passes through the point :
A. $(3,1)$
B. $(3,2)$
C. $(2,3)$
D. $(1,1)$

Answer:

D Watch Video Solution

5. If $y=\sin \left(2 \sin ^{-1} x\right)$, then $\left(1-x^{2}\right) y_{2}$ is equal to :
A. $-x y_{1}+4 y$
B. $-x y_{1}-4 y$
C. $x y_{1}-4 y$
D. $x y_{1}+4 y$

Answer:

D Watch Video Solution

6. Some young entrepreneurs started an industry
"young achievers" for casting metal into various
shapes. They put up and advertisement online stating
the same and expecting order to cast metal for toys, sculptures, decorative pieces and more .

A group of friends wanted to make innovative toys and hence contacted the "young achievers" to order them to cast metal into solid half cylinders with a rectangular based semi-circular ends

Based on the above informtion, answer the following questions:

The volume (V) of the casted half cylinder will be :
A. $\pi r^{2} h$
B. $\frac{1}{3} \pi r^{2} h$
C. $\frac{1}{2} \pi r^{2} h$
D. $p r^{2}(r+h)$

Answer:

7. Some young entrepreneurs started an industry
"young achievers" for casting metal into various shapes. They put up and advertisement online stating the same and expecting order to cast metal for toys, sculptures, decorative pieces and more .

A group of friends wanted to make innovative toys and hence contacted the "young achievers" to order them to cast metal into solid half cylinders with a rectangular based semi-circular ends

Based on the above informtion, answer the following

questions:

The total surface area(S) of the casted half cylinder will be :
A. $\pi r h+2 \pi r^{2}+r h$
B. $\pi r h+\pi r^{2}+2 r h$
C. $2 \pi r h+\pi r^{2}+2 r h$
D. $\pi r h+\pi r^{2}+r h$

Answer:

D Watch Video Solution

8. Some young entrepreneurs started an industry
"young achievers" for casting metal into various
shapes. They put up and advertisement online stating
the same and expecting order to cast metal for toys, sculptures, decorative pieces and more .

A group of friends wanted to make innovative toys and hence contacted the "young achievers" to order them to cast metal into solid half cylinders with a rectangular based semi-circular ends

Based on the above informtion, answer the following questions:

The total surface area S can be expressed in terms of V and r as :
A. $2 \pi r+\frac{2 V(\pi+2)}{\pi r}$
B. $2 \pi r+\frac{2 V}{\pi r}$
C. $\pi r^{2}+\frac{2 V(\pi+2)}{\pi r}$
D. $2 \pi r^{2}+\frac{2 V(\pi+2)}{\pi r}$

Answer:

D Watch Video Solution

9. Some young entrepreneurs started an industry
"young achievers" for casting metal into various
shapes. They put up and advertisement online stating
the same and expecting order to cast metal for toys, sculptures, decorative pieces and more .

A group of friends wanted to make innovative toys and hence contacted the "young achievers" to order them to cast metal into solid half cylinders with a rectangular based semi-circular ends

Based on the above informtion, answer the following

questions:

For the given half- cylinder of volume V , the total surface area S is minium, when:
A. $(\pi+2) V=\pi^{2} r^{3}$
B. $(\pi+2) V=\pi^{2} r^{3}$
C. $2(\pi+2) V=\pi^{2} r^{3}$
D. $(\pi+2) V=\pi^{2} r$

Answer:

D Watch Video Solution

10. Some young entrepreneurs started an industry
"young achievers" for casting metal into various
shapes. They put up and advertisement online stating
the same and expecting order to cast metal for toys, sculptures, decorative pieces and more .

A group of friends wanted to make innovative toys and hence contacted the "young achievers" to order them to cast metal into solid half cylinders with a rectangular based semi-circular ends

Based on the above informtion, answer the following questions:

The ratio $\mathrm{h}: 2 \mathrm{r}$ for S to be minimum will be equal to :
A. $2 \pi: \pi+2$
B. $2 \pi: \pi+1$
C. $\pi: \pi+1$
D. $\pi: \pi+2$

Answer:

