

MATHS

BOOKS - XII BOARDS PREVIOUS YEAR

QUESTION PAPER 2022 TERM 1 SET 2

Section A

1. A relation R is defined on N. which of the following is the reflexive relation?

A.
$$R = \{(x,y)\!:\! x > y, x, y \in N\}$$

B. $R = \{(x,y) : x+y = 10, x, y \in N\}$

C. $R = \{(x, y) : xy ext{ is the square number ,x,y } \in N\}$

D.
$$R = \{(x,y) : x+4y = 10, x, y \in N\}$$

Answer:

2. The function $f \colon R o R$ defined f(x) = 4+3 cos x is,

A. bijective

- B. one-one but not onto
- C. onto but not one-one
- D. neither one-one nor onto

3. If
$$y = \cot^{-1} x, x < 0$$
, then :

A.
$$rac{\pi}{2} < y \leq \pi$$

B. $rac{\pi}{2} < y < \pi$

$$\mathsf{B}.\,\frac{}{2} < y < \pi$$

$$\mathsf{C}.-\frac{\pi}{2} < y < 0$$

$$\mathsf{D}.-\frac{\pi}{2} \leq y < 0$$

Answer:

Watch Video Solution

4. The number of functions defined from $\{1, 2, 3, 4, 5\} \rightarrow \{a, b\}$ which are one - one is :

A. 5

B. 3

C. 2

D. 0

Answer:

Watch Video Solution

5. If
$$A = egin{bmatrix} 4 & 2 \ -1 & 1 \end{bmatrix}$$
, then (A -2I)(A-3I) is equal to :

A. A

B.I

C. 5I

D. 0

Answer:

6. If P is 3 x 3 matrix such that P' = 2P+I, where P' is the

transpose of P , then :

A. P=I

B. P=-I

C. P=2I

D. P=-21

Answer:

Watch Video Solution

7. If order of matrix A is 2×3 , of matrix B is 3×2 , and of matrix C is 3×3 , then which one of the following is not defined ?

A. C (A+ B')

B. C (A+ B')'

C. BAC

D. CB+ A'

Answer:

8. If
$$A = egin{bmatrix} lpha & 2 \ 2 & lpha \end{bmatrix}$$
 and $egin{bmatrix} A^3 \ = 27$ then the value of $lpha$ is:

A. ± 1

- $\mathsf{B}.\pm 2$

C. $\pm\sqrt{5}$ D. $\pm\sqrt{7}$

10. The inverse of
$$\begin{bmatrix} -4 & 3 \\ 7 & -5 \end{bmatrix}$$
 is

A.
$$\begin{bmatrix} -5 & 3 \\ 7 & -4 \end{bmatrix}$$

B.
$$\begin{bmatrix} 5 & 3 \\ 7 & 4 \end{bmatrix}$$

C.
$$\begin{bmatrix} -5 & 7 \\ 3 & -4 \end{bmatrix}$$

D.
$$\begin{bmatrix} -5 & -3 \\ -7 & -4 \end{bmatrix}$$

11. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 59 & 69 & -1 \end{bmatrix}$$
, then A^{-1} :

A. is A

B. is (-A)

C. is A^2

D. does not exist

12. If the function f(x) = $\begin{cases} 3x-8, ext{if} \quad x\leq 5 \\ 2k, ext{if} \quad x>5 \end{cases}$ is

continuous, then the value of k is :

A.
$$\frac{2}{7}$$

B. $\frac{7}{2}$
C. $\frac{3}{7}$
D. $\frac{4}{7}$

13. The function f(x) = [x], where [x] is the greatest integer function that is less than or equal to x, is continuous at :

A. 4

 $\mathsf{B.}-2$

 $C.\,1.5$

D. 1

14. If $y= an^{-1}ig(e^{2x}ig)$, then $rac{dy}{dx}$ is equal to :

A.
$$\frac{2e^{2x}}{1+e^{4x}}$$

B. $\frac{1}{1+e^{4x}}$
C. $\frac{2}{e^{2x}+e^{-2x}}$
D. $\frac{1}{e^{2x}-e^{-2x}}$

Answer:

15. If
$$y^2(2-x)=x^3$$
 , then $\left(rac{dy}{dx}
ight)_{(1,1)}$ is equal to :

Watch Video Solution

A. 2

C. 3
D.
$$-\frac{3}{2}$$

B-2

Answer:

16. The angle between the tangents to the curve $y = x^2 - 5x + 6$ at the point (2, 0) and (3, 0) is:

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$

C.
$$\frac{\pi}{4}$$

D. 0

Answer:

17. The interval, in which function $y = x^3 + 6x^2 + 6$ is increasing, is :

A.
$$(-\infty, -4) \cup (0, \infty)$$

B. $(-\infty, 4)$
C. $(-4, 0)$
D. $(-\infty, 0) \cup (4, \infty)$

18. The value of x for which $\left(x-x^2
ight)$ is maximum, is :

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

19. If the corner points of the feasible region of an LPP are (0, 3), (3, 2) and (0, 5), then the minimum value of Z = 11x + 7y is :

A. 21

B. 33

C. 14

D. 35

20. The number of solutions of the system of inequations $x+2y\leq 3, 3x+4y\geq 12, x\geq 0, y\geq 1$ is :

A. 0

B. 2

C. finite

D. infinite

Answer:

> Watch Video Solution

1. The number of equivalence relations in the set (1, 2,

3) containing the elements (1, 2) and (2, 1) is :

A. 0

B. 1

C. 2

D. 3

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = \frac{1}{x}$, for all $x \in R$.

Then, f is :

A. one-one

B. onto

C. bijective

D. not defined

3. The function $f : N \rightarrow N$ is defined by $f(n) = \begin{cases} \frac{n+1}{2} & \text{, if n is odd} \\ \frac{n}{2} & \text{, if n is even} \end{cases}$

The function f is :

A. bijective

B. one-one but not onto

C. onto but not one-one

D. neither one-one nor onto

Answer:

Watch Video Solution

4. The value of
$$\sin^{-1} \left(\cos rac{13\pi}{5}
ight)$$
 is :

A.
$$-\frac{3\pi}{5}$$

B. $-\frac{\pi}{10}$
C. $\frac{3\pi}{5}$
D. $\frac{\pi}{10}$

5. If $\sin^{-1}x > \cos^{-1}x$ then x is

Watch Video Solution

6. If
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
, then A + A' = I then the value of α is :

A.
$$\frac{\pi}{6}$$

$$\mathsf{B.}\,\frac{\pi}{3}$$

 $\mathsf{C.}\,\pi$

D.
$$\frac{3\pi}{2}$$

7. The determinant
$$\begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix}$$
 is equal to :

A.
$$kig(3y+k^2ig)$$

$$\mathsf{B}.\, 3y+k^2$$

C.
$$3y + k^2$$

D.
$$k^2(3y+k)$$

Watch Video Solution

8. If
$$A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & -1 & 3 \\ 4 & 2 & 0 \end{bmatrix}$$
 is the adjoint of a square

matrix B, then B^{-1} is equal to :

A. $\pm A$

B. $\pm \sqrt{2}A$

.

$$\mathsf{C.} \pm \frac{1}{\sqrt{2}}B$$
$$\mathsf{D.} \pm \frac{1}{\sqrt{2}}A$$

10. If
$$y = e^{-x}$$
 , then $\displaystyle rac{d^2 y}{dx^2}$ is equal to :

A.
$$-y$$

B. *y*

C. x

 $\mathsf{D}.-x$

11. If $x=t^2+1, y=2$ at then $\displaystyle rac{d^2y}{dx^2}$ at t = a is :

A.
$$-rac{1}{a}$$

B. $-rac{1}{2a^2}$
C. $rac{1}{2a^2}$

12. The function f(x)
$$\left\{egin{array}{ccc} x^2 & ext{for} & x < 1 \ 2-x & ext{for} & x \geq 1 \end{array}
ight.$$
 is

A. not differentiable at x =1

B. differentiable at x =1

C. not continuous at x = 1

D. neither continuous nor differentiable at x = 1

Answer:

Watch Video Solution

13. The curve $x^2 - xy + y^2 = 27$ has tangents parallel

to x-axis at :

A. (3,6) and (-3,-6)

B. (3,-6) and (-3, 6)

C. (-3,-6) and (3,-6)

D. (-3,6) and (-3,-6)

Answer:

14. A wire of length 20 cm is bent in the form of a sector of a circle. The maximum area that can be enclosed by the wire is :

A. 20 sq cm

B. 25 sq cm

C. 10 sq cm

D. 30 sq cm

Answer:

15. The function (x-sin x) decreases for :

B.
$$x < rac{\pi}{2}$$

C. $0 < x < rac{\pi}{4}$

D. no value of x

16. If θ is the angle of intersection between the curves $y^2 = 4ax$ and $ay = 2x^2$ at (a,2a), then the value of $\tan \theta$ is :

A.
$$\frac{3}{5}$$

B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. $\frac{2}{5}$

17. The maximum value of z =3x+4y subject to the constraints $x \ge 0, y \ge 0$ and $x + y \le 1$ is

A. 7

B. 4

C. 3

D. 10

18. The feasible region of an LPP is given in the following figure :

Then, the constraints of the LPP are $x \geq 0, y \geq 0$ and

A. $2x + y \leq 52$ and $x + 2y \leq 76$

B. $2x + y \le 104$ and $x + 2y \le 76$

C. $x + 2y \le 104$ and $2x + y \le 76$

D. $x + 2y \le 104$ and $2x + y \le 38$

19. If the minimum value of an objective function Z = ax + by occurs at two points (3, 4) and (4, 3), then :

A. a + b = 0

 $\mathsf{B.}\,a=b$

C. 3a = b

 $\mathsf{D}.\,a=3b$

20. For the following LPP Maximise Z = 3x + 4ysubject to constraints $x-y\geq \ -1,x\leq 3$ $x \geq 0, y \geq 0$ the maximum value is : A. 0

B.4

C. 25

D. 30

B. symmetric but not reflexive

C. transitive but not reflexive

D. reflexive but not symmetric

A. 12

B. - 12

C. 24

D. - 24

A. a = 1 = b

B.
$$a = \cos 2\theta, b = \sin 2\theta$$

 $\mathsf{C.}\,a\sin2\theta, b=\cos2\theta$

D.
$$a=\cos heta,b=\sin heta$$

Answer:

4. The normal to the curve $3y = 6x - 5x^3$ at the point

$$\left(1,\,rac{1}{3}
ight)$$
 passes through the point :

A. (3, 1)

B. (3, 2)

C. (2, 3)

D. (1, 1)

Answer:

Watch Video Solution

5. If
$$y = \sinig(2\sin^{-1}xig)$$
 , then $ig(1-x^2ig)y_2$ is equal to :

A.
$$-xy_1+4y$$

- $\mathsf{B.}-xy_1-4y$
- $\mathsf{C.}\, xy_1 4y$
- D. $xy_1 + 4y$

6. Some young entrepreneurs started an industry "young achievers" for casting metal into various shapes . They put up and advertisement online stating the same and expecting order to cast metal for toys, sculptures , decorative pieces and more .

The volume (V) of the casted half cylinder will be :

A.
$$\pi r^2 h$$

B. $\frac{1}{3}\pi r^2 h$
C. $\frac{1}{2}\pi r^2 h$
D. $pr^2(r+h)$

7. Some young entrepreneurs started an industry "young achievers" for casting metal into various shapes . They put up and advertisement online stating the same and expecting order to cast metal for toys, sculptures , decorative pieces and more .

The total surface area(S) of the casted half cylinder will be :

A.
$$\pi rh + 2\pi r^2 + rh$$

B. $\pi rh + \pi r^2 + 2rh$
C. $2\pi rh + \pi r^2 + 2rh$
D. $\pi rh + \pi r^2 + rh$

8. Some young entrepreneurs started an industry "young achievers" for casting metal into various shapes . They put up and advertisement online stating the same and expecting order to cast metal for toys, sculptures , decorative pieces and more .

The total surface area S can be expressed in terms of V and r as :

A.
$$2\pi r + \frac{2V(\pi + 2)}{\pi r}$$

B. $2\pi r + \frac{2V}{\pi r}$
C. $\pi r^2 + \frac{2V(\pi + 2)}{\pi r}$
D. $2\pi r^2 + \frac{2V(\pi + 2)}{\pi r}$

9. Some young entrepreneurs started an industry "young achievers" for casting metal into various shapes . They put up and advertisement online stating the same and expecting order to cast metal for toys, sculptures , decorative pieces and more .

For the given half- cylinder of volume V, the total surface area S is minium , when:

A.
$$(\pi+2)V=\pi^2r^3$$

B.
$$(\pi+2)V=\pi^2r^3$$

C. $2(\pi + 2)V = \pi^2 r^3$

D. $(\pi+2)V=\pi^2 r$

10. Some young entrepreneurs started an industry "young achievers" for casting metal into various shapes . They put up and advertisement online stating the same and expecting order to cast metal for toys, sculptures , decorative pieces and more .

The ratio h: 2r for S to be minimum will be equal to :

A. $2\pi : \pi + 2$ B. $2\pi : \pi + 1$ C. $\pi : \pi + 1$

D. π : π + 2

