đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - XII BOARDS PREVIOUS YEAR

QUESTION PAPER 2022 TERM 1 SET 1

Section A

1. A negatively charged object X is repelled by another charged object Y. However an object Z
is attracted to object Y. Which of the following is the most possibility for the object Z ?
A. A positively charged only
B. negatively charged only
C. neutral or positively charged
D. neutral or negatively charged

Answer:

- Watch Video Solution

2. In an experiment three microscopic latex spheres are, sprayed into a chamber and became charged with charges $+3 e,+5 e$ and $3 e$ respectively. All the three spheres came in contact simultaneously for a moment and got separated. Which one of the following are possible values for the final charge on the spheres?

$$
\begin{aligned}
& \text { A. }+5 e,-4 e,+5 e \\
& \text { B. }+6 e,+6 e,-7 e \\
& \text { C. }+4 e,+3.5 e,+5.5 e
\end{aligned}
$$

$$
\text { D. }+5 e,-8 e,+7 e
$$

Answer:

D Watch Video Solution

3. An object has charge of 1 C and gains 5.0×10^{18} electrons. The net charge on the object becomes-
A. $-80 C$
B. $+0.80 C$

C. $+1.80 C$

D. $+0.20 C$

Answer:

- Watch Video Solution

4. Kirchhoff's first rule $\sum I=0$ and second rule $\sum I R=\sum E$ (where the symbols have their usual meanings) are respectively based on

A. conservation

conservation of charge
B. conservation of energy, conservation of
charge
C. conservation of charge, conservation of
momentum
D. conservation of charge, conservation of
energy

Answer:

5. The electric power consumed by a $220 \mathrm{~V}-100$ W bulb when operated at 110 V is
A. 25 W
B. 30 W
C. 35 W
D. 45 W

Answer:
6. Which of the following has negative temperature coefficient of resistivity ?
A. metal
B. metal and semiconductor
C. semiconductor

D. metal and alloy

Answer:

7. Two wires carrying currents I_{1} and I_{2} lie, one slightly above the other, in a horizontal plane as shown in figure. The region of vertically upward strongest magnetic field is

A. I
B. II
C. III
D. IV

Answer:

Watch Video Solution

8. Two parallel conductors carrying current of
4.0 A and 10.0 A are placed 2.5 cm apart in
vacuum. The force per unit length between
them is -

$$
\text { A. } 6.4 \times 10^{-5} \mathrm{~N} / \mathrm{m}
$$

$$
\text { B. } 6.4 \times 10^{-2} N / m
$$

$$
\text { C. } 4.6 \times 10^{-4} N / m
$$

D. $3.2 \times 10^{-4} \mathrm{~N} / \mathrm{m}$

Answer:

D Watch Video Solution

9. If an ammeter is to be used in place of a voltmeter, then we must connect with the ammeter a-
A. low resistance in parallel
B. low resistance in series
C. high resistance in parallel
D. high resistance in series

Answer:

D Watch Video Solution

10. The magnetic field at the centre of a current
carrying circular loop of radius R , is B_{1}. The magnetic field at a point on its axis at a
distance R from the center of the loop is B_{2}.
Then the ratio $\left(B_{1} / B_{2}\right)$ is

> A. $2 \sqrt{2}$
> B. $\frac{1}{\sqrt{2}}$
> C. $\sqrt{2}$
> D. -2

Answer:

- Watch Video Solution

11. The self-inductance of a solenoid of 600 turns is 108 mH . The self-inductance of a coil having 500 turns with the same length, the same radius and the same medium will be
A. 95 mH
B. 90 mH
C. 85 mH
D. 75 mH

Answer:
12. The rms current in a circuit connected to a

50 Hz ac source is 15 A . The value of the current in the circuit $\left(\frac{1}{600}\right) s$ after the instant the current is-

$$
\text { A. } \frac{15}{\sqrt{2}} A
$$

B. $15 \sqrt{2} A$
C. $\frac{\sqrt{2}}{15} A$
D. $8 A$
13. In a circuit the phase difference between the alternating current and the source voltage $\frac{\pi}{2}$. Which of the following cannot be the element(s) of the circuit?
A. only C
B. only L
C. Land R
D. Lor C

Answer:

D Watch Video Solution

14. The electric potential V at any point (x, y, z) is given by $V=3 x^{2}$ where x is in metres and V in
volts. The electric field at the point ($1 \mathrm{~m}, 0,2 \mathrm{~m}$)
is -
A. $6 \mathrm{~V} / \mathrm{m}$ along -x-axis
B. $6 \mathrm{~V} / \mathrm{m}$ along +x -axis
C. 1.5 V/m along -x-axis

D. $1.5 \mathrm{~V} / \mathrm{m}$ along +x -axis

Answer:

D Watch Video Solution

15. Which of the diagrams correctly represents
the electric field between two charged plates if
a neutral conductor is placed in between the places ?
A.

Answer:

D Watch Video Solution

16. A variable capacitor is connect to a 200 V battery. If its capacitance is changed from $2 \mu F$
to $X . \mu F$, the decrease in energy of the capacitor is $2 \times 10^{-2} J$. The value of X is -
A. $1 \mu F$
B. $2 \mu F$
C. $3 \mu F$
D. $4 \mu F$

Answer:

- Watch Video Solution

17. A potential difference of 200 V is maintained

 across a conductor of resistance 100Ω. The number of electrons passing through it in 1 s isA. 1.25×10^{19}
B. 2.5×10^{18}
C. 1.25×10^{18}
D. 2.5×10^{16}

Answer:

18. Value of impedance of series LCR circuit is given by:
A. $R+X_{L}+X_{C}$

$$
\text { B. } \sqrt{\frac{1}{X_{C}^{2}}+\frac{1}{X_{L}^{2}}+R^{2}}
$$

C. $\sqrt{X_{L}^{2}-X_{C}^{2}+R^{2}}$
D. $\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$

Answer:

- Watch Video Solution

19. When an alternating voltage $E=E_{0} \sin \omega t$ is applied to a circuit , a current $I=I_{0} \sin \left(\omega t+\frac{\pi}{2}\right)$ flows through it . The average power dissipated in the circuit is
A. $E_{\mathrm{rms}} I_{\mathrm{rms}}$
B. $E_{0} I_{0}$
C. $\frac{E_{0} I_{0}}{\sqrt{2}}$
D. Zero

Answer:

20. A current carrying wire kept in a uniform magnetic field will experience a maximum force when it is
A. perpendicular to the magnetic field
B. parallel to the magnetic field
C. at an angle of 45° to the magnetic field.
D. at an angle of 60° to the magnetic field.

Answer:

- Watch Video Solution

21. The voltage across a resistor, an inductor, and a capacitor connected in series to an ac source are $20 \mathrm{~V}, 15 \mathrm{~V}$ and 30 V respectively. The resultant voltage in the circuit is
A. 5 V
B. 20 V
C. 25 V
D. 65 V

Answer:
22. In a dc circuit the direction of current inside the battery and outside the battery respectively are -
A. positive to negative terminal and negative
to positive terminal
B. positive to negative terminal and positive
to negative terminal
C. negative to positive terminal and positive
to negative terminal

D. negative to positive terminal and negative

to positive terminal

Answer:

D Watch Video Solution

23. The magnitude of electric field due to a point charge $2 q$, at distance r is E. Then the magnitude of electric field due to a uniformly charged thin spherical shell of radius R with
total charge q at a distance $\frac{r}{2}(r \gg R)$ will be
A. $\frac{E}{4}$
B. 0
C. $2 E$
D. $4 E$

Answer:

- Watch Video Solution

24. The horizontal component of earth's magnetic field at a place is 0.2 G whereas it's
total magnetic field is 0.4 G . The angle of dip at the place is
A. 30°
B. 45°
C. 60°
D. 90°

Answer:
25. The current in the primary coil of a pair of coils changes from 7 A to 3 A in 0.04 s . The mutual inductance between the two coils is 0.5
H. The induced emf in the secondary coil is -
A. 50 V
B. 76 V
C. 100 V
D. 220 V

- Watch Video Solution

Section B

1. A square sheet of side 'a' is lying parallel to $X Y$
plane at $z=a$ The electric field in the region is
$\vec{E}=c z^{2} \hat{k}$. The electric flux through the sheet
is
A. $a^{4} c$
B. $\frac{1}{3} a^{3} c$
C. $\frac{1}{3} a^{4} c$
D. 0

Answer:

D Watch Video Solution

2. Three charges $q,-q$ and q_{0}, are placed as
shown in figure. The magnitude of the net force
on the charge q_{0} at point O is $\left[k=\frac{1}{\left(4 \pi \varepsilon_{0}\right)}\right]$

A. 0
B. $\frac{2 k q q_{0}}{a^{z}}$
C. $\frac{\sqrt{2} k q q_{0}}{a^{2}}$
D. $\frac{1}{\sqrt{2}} \frac{k q q_{0}}{a^{2}}$

Answer:

D Watch Video Solution

3. $\mathrm{A}+3.0 \mathrm{nC}$ charge Q is initially at rest at a distance of $r_{1}=10 \mathrm{~cm}$ from a +5.0 nC charge q fixed at the origin. The charge Q is moved away
from q to a new position at $r_{2}=15 \mathrm{~cm}$. In this process work done by the field is
A. $1.29 \times 10^{-5} \mathrm{~J}$
B. $3.6 \times 10^{5} \mathrm{~J}$

$$
\text { C. }-4.5 \times 10^{-7} J
$$

$$
\text { D. } 4.5 \times 10^{-7} J
$$

Answer:

D Watch Video Solution

4. A car battery is charged by a 12 V supply, and energy stored in it is $7.20 \times 10^{5} \mathrm{~J}$. The charge passed through the battery is -

$$
\text { A. } 6.0 \times 10^{4} C
$$

B. $5.8 \times 10^{3} J$
C. 8.64×10^{6} J
D. $1.6 \times 10^{5} C$

Answer:

- Watch Video Solution

5. A straight conducting rod of length I and mass m is suspended in a horizontal plane by a pair of flexible strings in a magnetic field of magnitude B. To remove the tension in the
supporting strings, the magnitude of the current in the wire is .
A. $\frac{m g B}{l}$
B. $\frac{m g l}{B}$
C. $\frac{m g}{l B}$
D. $\frac{l B}{m g}$

Answer:

- Watch Video Solution

6. A constant current I is maintained in a solenoid. Which of Ithe following quantities will
increase if an iron rod is inserted in the solenoid along its asix?
A. The magnetic field at the centre
B. The magnetic flux linked with the solenoid
C. The rate of heating

D. The self - inductance of the solenoid

Answer:

7. As the frequency of an ac circuit increases, the current first increases and then decreases.

What combination of circuit elements is most
likely to comprise the circuit ?
A. L.C and R
B. L and C
C. L and R
D. R and C

- Watch Video Solution

8. If $\mathrm{n}, \mathrm{e}, \tau, \mathrm{m}$, are representing electron density charge, relaxation time and mass of an electron respectively then the resistance of wire of length I and cross sectional area A is given by
A. $\frac{\mathrm{ne}^{2} A}{2 m \pi l}$
B. $\frac{m l}{\mathrm{ne}^{2} \tau A}$
C. $\frac{m \tau A}{\mathrm{ne}^{2} t}$
D. $\frac{n e^{2} \tau A}{2 m l}$

Answer:

D Watch Video Solution

9. A proton and an alpha particle move in circular orbits in a uniform magnetic field. Their speeds are in the ratio of 9:4. The ratio of radii of their circular orbits $\left(\frac{r_{p}}{r_{\text {alpha }}}\right)$ is
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{8}{9}$
D. $\frac{9}{8}$

Answer:

D Watch Video Solution

10. A coil of area $100 \mathrm{~cm}^{2}$ is kept and angle of 30° with a magnetic field of $10^{-1} \mathrm{~T}$. The magnetic field is reduced to zero in $10^{-4} s$. The induced emf in the coil is - .
A. $5 \sqrt{3} V$
B. $50 \sqrt{3} \vee$

C. 5.0 V

D. 50.0 V

Answer:

(D) Watch Video Solution

11. A 15Ω resistor, an 80 mH inductor and a capacitor of capacitance C are connected in series with a 50 HZ are source. If the source voltage and current in the circuit are in phase, then the value of capacitance is .
A. $100 \mu F$
B. $127 \mu F$
C. $142 \mu F$
D. $160 \mu F$

Answer:

D Watch Video Solution

12. Four objects W, X, Y and Z each with charge
$+q$ are held fixed at four points of a square of side d as a shown in the figure. Object X and Z
on the midpoints of the sides of the square .

The electrostatic force exerted by object W on object X is F. Then the magnitude of the force exerted by object W on Z is .

A. $\frac{F}{7}$
B. $\frac{F}{5}$
C. $\frac{F}{3}$
D. $\frac{F}{2}$

Answer:

- Watch Video Solution

13. Two sources of equal emf are connected to an external resistance R. The internal resistance of the two sources are R_{1} and $R_{2}\left(R_{1}>R_{1}\right)$.
if the potential difference across the source
having internal resistance R_{2} is zero, then

$$
\begin{aligned}
& \text { A. } \frac{r_{1}+r_{2}}{r_{2}-r_{1}} \\
& \text { B. } r_{2}-r_{1} \\
& \text { C. } \frac{r_{1} r_{2}}{r_{2}-r_{1}} \\
& \text { D. } \frac{r_{1}+r_{2}}{r_{1} r_{2}}
\end{aligned}
$$

Answer:

(D) Watch Video Solution
14. Which of the following statements is correct?
A. Magnetic field lines do not form closed
loops.
B. Magnetic field lines start from north pole
and end at south pole of a magnet.
C. The tangent at a point on a magnetic field
line represents the direction of the magnetic field at that point.

D. Two magnetic field lines may intersect

each other.

Answer:

D Watch Video Solution

15. The equivalent resistance between A and B of the network shown in figure is

A. $3 R \Omega$
B. $\left(\frac{3}{2}\right) R \Omega$
C. $2 R \Omega \mathrm{~s}$
D. $\left(\frac{2}{3}\right) R \Omega$

Answer:

- Watch Video Solution

16. A bar magnet has magnetic dipole moment \vec{M}. Its initial position is parallel to the direction of uniform magnetic field \vec{B}. In this position the magnitudes of torque and force acting on it respectively are -

A. O and MB

B. $M B$ and $M B$
C. 0 and 0
D. $|\vec{M} \times \vec{B}|$ and 0

Answer:

- Watch Video Solution

17. Two charges $14 \mu C$ and $-4 \mu C$ are placed at
$(-12 \mathrm{~cm}, 0,0)$ and ($12 \mathrm{~cm}, 0,0$) in an external electric field $E=\left(\frac{B}{r^{2}}\right)$ where $B=1.2 \times 10^{6} \mathrm{~N} /\left(\mathrm{cm}^{2}\right)$ and r is in metres. The electrostatic potential energy of the configuration is
A. 97.9 J
B. 102.1 J
C. 2.1 J

$$
\text { D. }-97.9 \mathrm{~J}
$$

Answer:

D Watch Video Solution

18. A 300Ω resistor and a capacitor of $\left(\frac{25}{\pi}\right) \mu F$ are connected in series to a $200 \mathrm{~V}-50 \mathrm{~Hz}$ ac source. The current in the circuit is -
A. 0.1 A
B. 0.4 A

C. 0.6 A

D. 0.8 A

Answer:

D Watch Video Solution

19. The core of a transformer is laminated to reduce
A. flux leakage
B. copper loss
C. hysteresis loss

D. eddy current

Answer:

D Watch Video Solution

20. Assertion (A) : A negative charge in an
electric field moves along the direction of the electric field.

Reason (R) : On a negative charge a force acts in the direction of the electric field.
A. Both $(A) \&(R)$ are true and (R) is correct explanation of (A)
B. Both (A) \& (R) are true, and (R) is not correct explanation of (A)

C. (A) is true, but (R) is false

D. (A) is false and (R) is also false

Answer:

- Watch Video Solution

21. Assertion : We cannot make a magnet with only one pole.

Reason : Magnetic monopoles do not exist.

A. Both (A) \& (R) are true and (R) is correct

 explanation of (A)B. Both (A) \& (R) are true, and (R) is not
correct explanation of (A)

C. (A) is true, but (R) is false

D. (A) is false and (R) is also false

- Watch Video Solution

22. Assertion: When radius of circular loop carrying current is doubled, its magnetic moment becomes four times.

Rrason: Magnetic moment depends on area of the loop.
A. Both $(A) \&(R)$ are true and (R) is correct explanation of (A)
B. Both (A) \& (R) are true, and (R) is not

C. (A) is true, but (R) is false

D. (A) is false and (R) is also false

Answer:

D Watch Video Solution

23. Assertion : Higher the range, greater is the resistance of ammeter.

Reason : To increase the range of ammeter, additional shunt needs to be used across it.
A. Both $(A) \&(R)$ are true and (R) is correct explanation of (A)
B. Both (A) \& (R) are true, and (R) is not correct explanation of (A)

C. (A) is true, but (R) is false

D. (A) is false and (R) is also false

Answer:

- Watch Video Solution

24. Assertion (A) : A step - up transformer
cannot be used as a step- down transformer.

Reason (R) : A transformer work only in one direction.
A. Both (A) \& (R) are true and (R) is correct explanation of (A)
B. Both (A) \& (R) are true, and (R) is not
correct explanation of (A)
C. (A) is true, but (R) is false
D. (A) is false and (R) is also false

Answer:

D Watch Video Solution

Section C

1. Equipotentials at a great distance from a collection of charges whose total sum is not zero are approximately

A. spheres

B. planes

C. ellipsoids

D. paraboloids

Answer:

D Watch Video Solution

2. Four charges $-\mathrm{q},-\mathrm{q},+\mathrm{q}$ and +q are placed at
the corners of a square of side 2 L is shown in
figures. The electric potential at point. A midway
between the two charges +q and +q is -

A. $\frac{1}{4 \pi \in_{0}} \frac{2 q}{L}\left(1-\frac{1}{\sqrt{5}}\right)$
B. $\frac{1}{4 \pi \in_{0}} \frac{2 q}{L}\left(1+\frac{1}{\sqrt{5}}\right)$
C. $\frac{1}{4 \pi \in_{0}} \frac{q}{2 L}\left(1-\frac{1}{\sqrt{5}}\right)$
D. Zero

Answer:

D Watch Video Solution

3. Case Study :

An experiment was set up with the circuit diagram shown in figure.

Given
that
$R_{1}=10 \Omega, R_{2}=R_{3}=5 \Omega, r=0 \Omega$ and $E=5 V$

The points with the same potential are -

A. b,c,d

B. f,h,
C. $\mathrm{d}, \mathrm{e}, \mathrm{f}$
D. a,b,j

Answer:

D Watch Video Solution

4. Case Study :

An experiment was set up with the circuit diagram shown in figure.

Given
that
$R_{1}=10 \Omega, R_{2}=R_{3}=5 \Omega, r=0 \Omega$ and $E=5 V$

The current through branch bg is -

$$
\begin{aligned}
& \text { A. } 1 A \\
& \text { B. } \frac{1}{3} \mathrm{~A} \\
& \text { C. } \frac{1}{2} \mathrm{~A} \\
& \text { D. } \frac{2}{3} \mathrm{~A}
\end{aligned}
$$

Answer:

D Watch Video Solution

5. Case Study :

An experiment was set up with the circuit diagram shown in figure.

Given
that
$R_{1}=10 \Omega, R_{2}=R_{3}=5 \Omega, r=0 \Omega$ and $E=5 V$

The power dissipated in R_{1} is -
A. 2 W
B. 2.5 W
C. 3 W
D. 4.5 W

Answer:

D Watch Video Solution

6. Case Study :

An experiment was set up with the circuit diagram shown in figure.

Given
that
$R_{1}=10 \Omega, R_{2}=R_{3}=5 \Omega, r=0 \Omega$ and $E=5 V$

The potential difference across R_{3} is -
A. 1.5 V
B. 2 V
C. 2.5 V
D. 3 V

Answer:

D Watch Video Solution

