©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - XII BOARDS PREVIOUS YEAR

QUESTION PAPER 2022 TERM 1 SET 2

Section A

1. An electric dipole placed in a non uniform
electric field may experience
A. only a force
B. only a torque
C. both force and torque
D. neither force nor torque

Answer:

D Watch Video Solution

2. Let N_{1} be the number of electric field lines going out of an imaginary cube of side a that encloses an isolated point charge 2 q and N_{2}
be the corresponding number for an imaginary sphere of radius a that encloses an isolated point charge $3 q$. Then $\left(N_{1} / N_{2}\right)$ is:

> A. $\frac{1}{\pi}$
> B. $\frac{2}{3}$
> C. $\frac{9}{4}$
> D. π

Answer:

D Watch Video Solution
3. In the circuit shown as $P \neq R$ and the reading of the galvanometer G is same with the switch open or closer. Then

A. $I_{Q}=I_{R}$
B. $I_{R}=I_{G}$
C. $I_{P}=I_{G}$
D. $I_{Q}=I_{G}$

Answer:

D Watch Video Solution

4. Two wires of the same material having
lengths in the ratio 1:2 and diameters in the ratio $2: 3$ are connected in series with an accumulator. Compute the ratio of P.D. across the two wires.
A. $\frac{1}{3}$
B. $\frac{3}{4}$
C. $\frac{4}{5}$
D. $\frac{9}{8}$

Answer:

D Watch Video Solution

5. Two moving coil galvanometers G_{1} and G_{2}
have the following particulars respectively
$N_{1}=30, A_{1}=3.6 \times 10^{-3} m^{2}, B_{1}=0.25 T$
$N_{2}=42, A_{2}=1.8 \times 10^{-3} m^{2}, B_{2}=0.50 T$

The spring constant is same for both the
galvanometers. The ratio of current sensitivities of G_{1} and G_{2} is:
A. $5: 7$
B. $7: 5$
C. 1: 4
D. 1:1

Answer:
(Watch Video Solution
6. A current I is flowing through the loop, as
shown in the figure. The magnetic field at centre O is

5

A. $\frac{5}{16}$, into the plane of the paper

5
B. $\frac{5}{16}$, out of the plane of the paper
C. $\frac{7}{16}$, out of the plane of the paper
D. $\frac{7}{16}$, into the plane of the paper

Answer:

D Watch Video Solution

7. A capacitor and an inductor are connected in two different ac circuits with a bulb glowing in each circuit. The bulb glows more brightly when :
A. the number of turns in the inductor is
increased
B. the separation between the plates of the capacitor is increased
C. an iron is introduced into the inductor
D. a dielectric is introduced into the gap
between the plates of the capacitor

Answer:

8. A pure inductor of 318 mH and a pure resistor of 75Ω are connected in series to an ac source of 50 Hz . The voltage across 75Ω resistor is found to be 150 V . The source voltage is :
A. 150 V
B. 175 V
C. 220 V
D. 250 V
9. The electric potential at a point on the axis of an electric dipole depends on the distance r of the point from the dipole as

$$
\begin{aligned}
& \text { A. } \frac{1}{x^{4}} \\
& \text { B. } \frac{1}{x^{3 / 2}} \\
& \text { C. } \frac{1}{x^{3}} \\
& \text { D. } \frac{1}{x^{2}}
\end{aligned}
$$

10. The ratio of the force between two small
spheres (with constant charges) F_{1} in air and
F_{2} in a medium of dielectric constant k is respectively..
A. $\frac{1}{k}$
B. k
C. k^{2}
D. $\frac{1}{k^{2}}$

Answer:

D Watch Video Solution

11. Infinity resistance in a resistance box has :
A. a resistance of $10^{5} \Omega$
B. a resistance of $10^{7} \Omega$
C. a resistance of ∞ resistance
D. a gap only
12. A battery of 15 V and negligible internal resistance is connected across a 50Ω resistor .

The amount of energy dissipated as heat in the resistor in one minute is :
A. 122 J
B. 270 J
C. 420 J
D. 720 J

Answer:

D Watch Video Solution

13. Lenz's law is consequence of the law of conservation of
A. energy
B. charge
C. mass
D. momentum

Answer:

D Watch Video Solution

14. The vertical component of earth's magnetic
field at a place is $\left(\frac{1}{\sqrt{3}}\right)$ times the horizontal
component. The angle of dip at that place is :
A. 0°
B. 30°
C. 45°

D. 60°

Answer:

D Watch Video Solution

15. A long straight wire in the horizontal plane
carries a current of 15 A in north to south direction. The magnitude and direction of magnetic field at a point 2.5 m east of the wire respectively are :
A. $1 \cdot 2 \mu T$, vertically upward
B. $1 \cdot 2 \mu T$, vertically downward
C. $0 \cdot 6 \mu T$, vertically upward
D. $0 \cdot 6 \mu T$ vertically downward

Answer:

D Watch Video Solution

16. The emf induced in a 10 H inductor in which
current changes from 11 A to 2 A in $9 \times 10^{-1} \mathrm{~s}$
is :
A. $10^{4} V$
B. $10^{3} \mathrm{~V}$
C. $10^{2} \mathrm{~V}$
D. 10 V

Answer:

D Watch Video Solution

17. A charge Q is placed at the centre of the
line joining two charges q and q. The system
of the three charges will be in equilibrium if Q
is :

> A. $+\frac{q}{3}$
> B. $-\frac{q}{3}$
> C. $+\frac{q}{4}$
> D. $-\frac{q}{4}$

Answer:

D Watch Video Solution
18. Electric flux in an electric field \vec{E} through area vector $\overrightarrow{d s}$ is given by

$$
\begin{aligned}
& \text { A. } \vec{E} \times d \vec{A} \\
& \text { B. } \frac{\vec{E} \times d \vec{A}}{\varepsilon_{0}} \\
& \text { C. } \vec{E} \cdot d \vec{A} \\
& \text { D. } \frac{\vec{E} \cdot d \vec{A}}{\varepsilon_{0}}
\end{aligned}
$$

Answer:

19. In a potentiometer experiment, the balancing length with a cell is 120 cm . When the cell is shunted by a 1Ω resistance, the balancing length becomes 40 cm . The internal resistance of the cell is .
A. 10Ω
B. 7Ω
C. 3Ω
D. 2Ω

- Watch Video Solution

20. An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the following is true?
A. The path of the electron will be circular about the axis .
B. The electron will be accelerated along
the axis
C. The path of the electron will be helical

D. The electron will continue to move with

the same velocity \vec{v} along the axis of the solenoid.

Answer:

D Watch Video Solution

21. If the speed v of a charged particle moving in a magnetic filed $\vec{B}(\vec{v}$ is perpendicular to $\vec{B})$ is halved, then the radius of its path will:
A. not change
B. become two times
C. become one- fourth
D. become half

Answer:

D Watch Video Solution

22. A metal plate is getting heated. Which one of following statements is incorrect ?
A. It is placed in a space varying magnetic field that does not vary with time .
B. A direct current in passing through the plate
C. An alternating current is passing
through the plate
D. It is placed in a time varying magnetic
filed.

Answer:

23. In an $A C$ circuit the voltage applied is $E=E_{0} \sin \omega t$. The resulting current in the circuit is $I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$. The power consumption in the circuit is given by
A. $E_{0} I_{0}$
B. $\frac{E_{0} I_{0}}{2}$
C. $\frac{E_{0} I_{0}}{\sqrt{2}}$
D. Zero

Answer:

24. The speed acquired by a free electron when

 accelerated from rest through a potential difference of 100 V is :$$
\text { A. } 6 \times 10^{6} m s^{-1}
$$

B. $3 \times 10^{6} \mathrm{~ms}^{-1}$
C. $4 \times 10^{-5} m s^{-1}$
D. $2 \times 10^{3} \mathrm{~ms}^{-1}$
25. Which one of the following is not affected by the presence of a magnetic field ?
A. A current carrying conductor
B. A moving charge
C. A stationary charge
D. A rectangular current loop with its plane
parallel to the field

Answer:

D Watch Video Solution

Section B

1. Two point charges $+8 q$ and $-2 q$ are located at $x=0$ and $x=L$ respectively. The location of a point on the x axis at which the net electric field due to these two point charges is
zero is
A. 8 L
B. 6L
C. 4 L
D. 2 L

Answer:

D Watch Video Solution
2. An electric dipole of dipole moment
$4 \times 10^{-5} C-m$, kept in a uniform electric
field of $10^{-3} N C^{-1}$,experiences a torque of
$2 \times 10^{-8} \mathrm{Nm}$. The angle which the dipole which the dipole makes with the electric field is :
A. 30°
B. 45°
C. 60°
D. 90°

Answer:

D Watch Video Solution
3. Three identical charges are placed on x - axis
from left to right with adjacent charges
separated by a distance d. The magnitude of
the force on a charge from its nearest neighbour charge is F . Let \hat{i} be the unit vector along $+x$ axis, then the net force on each charge from left to right is :
A. $(2 F \hat{i},-2 F \hat{i}, 2 F \hat{i})$
B. $(F \hat{i}, 0, F \hat{i})$
C. $\left(-\frac{5}{4} F \hat{i}, 0+\frac{5}{4} F \hat{i}\right)$
D. $(2 F \hat{i}, 0,2 F \hat{i})$

Answer:

D Watch Video Solution

4. Two students A and B calculate the charge
flowing through a circuit . A concludes that 300C of charge flows in 1 minute. B concludes
that 3.125×10^{19} electrons flow in 1 second . If
the current measured in the circuit is 5 A , then
the correct calculation in done by :
A. A
B. B
C. both A and B
D. neither A nor B

Answer:

D Watch Video Solution

5. The resistance of two wires having same length and same area of cross - section are 2Ω and 8Ω respectively. If the resistivity of 2Ω is
$2.65 \times 10^{-8} \Omega$ then the resistivity of 8Ω wire is

> A. $10.60 \times 10^{-8} \Omega-m$
> B. $8.32 \times 10^{-8} \Omega-m$
> C. $7.61 \times 10^{-8} \Omega-m$
> D. $5.45 \times 10^{-8} \Omega-m$

Answer:
(Watch Video Solution
6. In a certain region of space electric field E
and magnetic field B are perpendicular ot each
other and an electron enters region
perpendicular to the direction of B and E both
and moves undeflected, then velocity of electron is
A. $\vec{E} \cdot \vec{B}$
B. $|\vec{E} \times \vec{B}|$
C. $\frac{|\vec{E}|}{|\vec{B}|}$
D. $\frac{|\vec{B}|}{|\vec{E}|}$

Answer:

D Watch Video Solution

7. A test change of $1.6 \times 10^{-19} C$ is moving with velocity $\vec{v}=(4 \hat{i}+3 \hat{k}) m s^{-1}$ in a magnetic field $\vec{B}=(3 \hat{k}+4 \hat{i}) T$. The force on this test charge is :
A. $24 \hat{j} N$
B. $-24 \hat{i} N$
C. $24 \hat{k} N$
D. 0

Answer:

D Watch Video Solution

8. In a series LCR circuit, at resonance the
current is equal to :
A. $\frac{V}{R}$
B. $\frac{V}{X_{C}}$
C. $\frac{V}{X_{L}-X_{C}}$
D. $\frac{C}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}$

Answer:

D Watch Video Solution

9. The frequency of an ac source for which a
$10 \mu F$ capacitor has a reactance of $1000 \Omega i s$:
A. $\frac{1000}{\pi} H z$
B. 50 Hz

> C. $\frac{50}{\pi} H z$
> D. $\frac{100}{\pi} H z$

Answer:

- Watch Video Solution

10. In the given network all capacitors used are identical and each one is of capacitance C.

Which of the following is the equivalent
capacitance between the points A and B ?

A. $6 C$
B. $\frac{5}{2} C$
C. $\frac{3}{2} C$
D. $\frac{5}{6} C$

Answer:

11. $I-V$ characteristics of a copper wire of length L and area fo cross-section A is shown in Fig. The slope of the curve becomes

A. less if the length of the wire is increased
B. more if the length of the wire is increased
C. more if a wire of steel of same dimension is used
D. more if the temperature of wire is
increased

Answer:
(Watch Video Solution
12. When a potential difference (V) is applied across a conductor at temperature T , the drift velocity of electrons is proportional to
A. T
B. \sqrt{T}
c. v
D. \sqrt{V}

Answer:

D Watch Video Solution
13. Two thick wires and two thin wires, all of
the same materais and same length from a
square in the three differenct ways, P, Q and
R as shwon in figure with current connection
shown, the magneitc feidl at the centre of the
square is zero in cases.

A. P and R only
B. Q and R only
C. P and Q only
D. P, Q and R

Answer:

- Watch Video Solution

14. A circular coil carrying a certain current produces a megnetic field B_{o} at its centre. The coil is now rewound so as to have 3 turns and
the same current is passed through it. The new magnetic field at the centre is
A. $3 B_{0}$
B. $\frac{B_{0}}{3}$
C. $\frac{B_{0}}{9}$
D. $9 B_{0}$

Answer:
(Watch Video Solution
15. Which one of the following statements is true?
A. An inductor has infinite resistance in a de circuit.
B. A inductor and a capacitor both cannot conduct in a de circuit.
C. A capacitor can conduct in a de circuit but not an inductor.

D. An inductor can conduct in a de circuit

 but not a capacitor.
Answer:

D Watch Video Solution

16. The magnetic flux linked with a coil is given
by $\phi=5 t^{2}+3 t+16$, where ϕ is in webers
and t in seconds. The induced emf in the coil
at $t=5 \mathrm{~s}$ will be :
A. 53 V
B. 43 V
C. 10 V
D. 6 V

Answer:

D Watch Video Solution

17. When a charge is moved against the

Coulomb's force of an electric field, then
A. intensity of the electric field increases
B. intensity of the electric field decreases
C. work is done by the electric field
D. work is done by the external source

Answer:

D Watch Video Solution

18. A charge Q is located at the centre of a circle of radius r. The work done in moving a test charge q_{0} from point A to point B (at
opposite ends of diameter $A B$) so as to
complete a semicircle is $\left[k=\frac{1}{\left(4 \pi \varepsilon_{0}\right)}\right]$:
A. $k \frac{q_{0} Q}{r}$
B. $k \frac{Q q_{0}}{r^{2}}$
C. $k q_{0} Q r$
D. Zero

Answer:

D Watch Video Solution

19. A long solenoid carrying current produces
a magnetic field B along its axis. If the number
of turns in the solenoid is halved and current in it is doubled, the new magnetic field will be :
A. $\frac{B}{2}$
B. B
C. 2B
D. 4 B

Answer:

20. Assertion (A): A bar magnet experiences a torque when placed in a magnetic field.

Reason (R): A bar magnet exerts a torque on itself due to its own magnetic field.
A. Both Assertion (A) and Reason (R) are
true and Reason (R) is the correct explanation of Assertion (A).

B. Both Assertion (A) and Reason (R) are

true, but Reason (R) is not the correct
explanation of Assertion (A).
C. Assertion (A) is true, but Reason (R) is
false.
D. Assertion (A) is false, but Reason (R) is
true.

Answer:

- Watch Video Solution

21. Assertion (A): In a series LCR circuit connected to an ac source, resonance can take place.

Reason (R): At resonance $X_{L}=X_{C}$.
A. Both Assertion (A) and Reason (R) are
true and Reason (R) is the correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are
true, but Reason (R) is not the correct explanation of Assertion (A).

C. Assertion (A) is true, but Reason (R) is

false.
D. Assertion (A) is false, but Reason (R) is
true.

Answer:

D Watch Video Solution
22. Assertion (A): When a charged particle moves with velocity \vec{v} in a magnetic field \vec{B}
$(\vec{v} \perp \vec{B})$, the force on the particle does no
work.

Reason (R): The magnetic force is perpendicular to the velocity of the particle.
A. Both Assertion (A) and Reason (R) are
true and Reason (R) is the correct explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are
true, but Reason (R) is not the correct
explanation of Assertion (A).

C. Assertion (A) is true, but Reason (R) is

false.
D. Assertion (A) is false, but Reason (R) is
true.

Answer:

D Watch Video Solution

23. Assertion (A): Induced emf in two coils made of wire of the same length and the same thickness, one of copper and another of
aluminium is same. The current in copper coil is more than the aluminium coil.

Reason (R): Resistance of aluminium coil is more than that of copper coil.
A. Both Assertion (A) and Reason (R) are
true and Reason (R) is the correct explanation of Assertion (A).

B. Both Assertion (A) and Reason (R) are

true, but Reason (R) is not the correct explanation of Assertion (A).

C. Assertion (A) is true, but Reason (R) is

false.
D. Assertion (A) is false, but Reason (R) is
true.

Answer:

D Watch Video Solution
24. Assertion (A): A transformer is used to increase or decrease ac voltage only.

Reason (R): A transformer works on the basis of mutual induction.
A. Both Assertion (A) and Reason (R) are
true and Reason (R) is the correct
explanation of Assertion (A).
B. Both Assertion (A) and Reason (R) are
true, but Reason (R) is not the correct explanation of Assertion (A).
C. Assertion (A) is true, but Reason (R) is
false.

D. Assertion (A) is false, but Reason (R) is

true.

Answer:

- Watch Video Solution

Section C

1. Two charged spheres A and B having their
radii in the ratio 1:2 are connected together
with a conducting wire. The ratio of their surface charge densities $\left(\frac{\sigma_{A}}{\sigma_{B}}\right)$ will be :
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{4}$
D. 4

Answer:

D Watch Video Solution
2. A square current carrying loop is suspended
in a uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is \vec{F}, the net force on the remaining three arms of the loop is
A. $3 \vec{F}$
B. $-3 \vec{F}$
C. \vec{F}
D. $-\vec{F}$

- Watch Video Solution

3. A battery is combination of two or more cells. In the following figure , a single battery is represented in which two cells of emf ε_{1} and ε_{2} and internal resistance r_{1} and r_{2} respectively are connected.

The equivalent emf of this combination is :

$$
\begin{aligned}
& \text { A. } \frac{\varepsilon_{1} r_{1}+\varepsilon_{2} r_{2}}{r_{1}+r_{2}} \\
& \text { B. } \frac{\varepsilon_{1} r_{1}-\varepsilon_{2} r_{2}}{r_{1}+r_{2}} \\
& \text { C. } \frac{\varepsilon_{1} r_{2}-\varepsilon_{2} r_{1}}{r_{1}+r_{2}} \\
& \text { D. } e s \pi_{1}-\varepsilon_{2}
\end{aligned}
$$

Answer:

- Watch Video Solution

4. A battery is combination of two or more cells. In the following figure, a single battery is represented in which two cells of emf ε_{1} and
ε_{2} and internal resistance r_{1} and r_{2}
respectively are connected.

For terminal B to be negative :
A. $\varepsilon_{1} r_{2}>\varepsilon_{2} r_{1}$
B. $\varepsilon_{1} r_{2}<\varepsilon_{2} \varepsilon_{1}$
C. $\varepsilon_{1} r_{1}>\varepsilon_{2} r_{2}$
D. $\varepsilon_{2} r_{2}=\varepsilon_{1} r_{1}$

Answer:

- Watch Video Solution

5. A battery is combination of two or more
cells. In the following figure, a single battery is
represented in which two cells of emf ε_{1} and
ε_{2} and internal resistance r_{1} and r_{2}
respectively are connected.

The current in the internal circuit is :

$$
\begin{aligned}
& \text { A. } \frac{\varepsilon_{1}+\varepsilon_{2}}{r_{1}+r_{2}} \\
& \text { B. } \frac{\varepsilon_{2}-\varepsilon_{1}}{r_{1}+r_{2}} \\
& \text { C. } \frac{\varepsilon_{1}}{r_{1}}-\frac{\varepsilon_{2}}{r_{2}} \\
& \text { D. } \frac{\varepsilon_{1}}{r_{2}}-\frac{\varepsilon_{2}}{r_{1}}
\end{aligned}
$$

Answer:
6. A battery is combination of two or more cells. In the following figure, a single battery is represented in which two cells of emf ε_{1} and ε_{2} and internal resistance r_{1} and r_{2} respectively are connected.

The equivalent internal resistance of the combination is :

$$
\begin{aligned}
& \text { A. } \frac{r_{1}+r_{2}}{r_{1} r_{2}} \\
& \text { B. } r_{1}+r_{2} \\
& \text { C. } \frac{r_{1} r_{2}}{r_{1}+r_{2}} \\
& \text { D. } r_{1}-r_{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

