đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Miscellaneous Exercises

Exercise
1.
2. Column I
(i) $x+\sin x$
(ii) $\sec x$

Column II

(a) increasing
(b) decreasing
(c) neither increasing nor decreasing
2. If $u \sin t+v \cos t=5$ and $u \cos t-v \sin t=7$ then $(\ddot{u})(\dot{v})-(\dot{u})(\ddot{v})=$ ___ where dots denote differentiation w.r.t. t.

D Watch Video Solution

3. If g is the inverse function of fandf ${ }^{\prime}(x)=\sin x$, theng $^{\prime}(x)$ is $\operatorname{cosec}\{g(x)\}$ (b) $\sin \{g(x)\}$
$-\frac{1}{\sin \{g(x)\}}$ (d) none of these

- Watch Video Solution

4. Let $f(x)=x+1$ and $\phi(x)=x-2$. Then the value of x satisfying $|f(x)+\phi(x)|=|f(x)|+|\phi(x)|$ are :
5. One diagonal of a square is the portion of the line $7 x+5 y=35$ intercepted by the axes. Obtain the extremities of the other diagonal.

- Watch Video Solution

6.

$f(x)=2 \sin ^{2} \beta+4 \cos (x+\beta) \cdot \sin x \cdot \sin \beta+\cos 2(x+\beta)$
.Then the value of $|f(\alpha)|^{2}+\left\{f\left(\frac{\pi}{4}-\alpha\right)\right\}^{2}=$

D Watch Video Solution

7. A positive integral power of the imaginary quantity i is taken at random. The probability of the value being real is

D Watch Video Solution

8. If z is a complex number such that $z \bar{z}=1$ and amp $\frac{z}{\bar{z}}=\frac{\pi}{2}$ then $\mathrm{z}=$ \qquad
(D) Watch Video Solution
9. If $4 \sin ^{-1} x+\cos ^{-1} x=\pi$, then: $\mathrm{x}=$

D Watch Video Solution
10. The solution set of $f^{\prime}(x)>g^{\prime}(x)$ where $f(x)=\left(\frac{1}{2}\right) 5^{2 x+1}$ and $g(x)=5^{x}+4 x \log 5$ is

D Watch Video Solution

11. $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}$ is equal to \qquad

- Watch Video Solution

12. The differential coefficient of 2^{x} w.r.t. x^{2} is \qquad

(D) Watch Video Solution

13. A natural number less than or equal to 200 is written down at random. The probability of the number being a
\qquad .

(Watch Video Solution

14. A box contains 100 tickets numbered 1, 2, 3, ... ,100. Two tickets are chosen at random. It is given that the maximum number on the two chosen tickets is not more than 10 . the minimum number on them is 2 with probability \qquad .

- Watch Video Solution

15. Prove that two parabolas having the same focus and their axes in opposite directions, cut at right angles.
16. If a, b, c and d are positive real numbers such that $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=1$ then prove that $a b+b c+c d+d a \leq \frac{1}{4}$.

- Watch Video Solution

17. A vertical lamp-post of height h stands at a point on the boundary of a circular field. A man of height a is running round the boundary. Prove that the end of the shadow of the man will also travel on a circle. Find the ratio of the radii of the two circles.

(Watch Video Solution

18. Find the equations of straight lines which pass through the intersection of the lines $x-2 y-5=0,7 x+y=50 \&$
divide the circumference of the circle $x^{2}+y^{2}=100$ into two arcs whose lengths are in the ratio 2:1.

- Watch Video Solution

19. The circle $x^{2}+y^{2}=1$ cuts the x-axis at $\operatorname{Pand} Q$. Another circle with center at Q and variable radius intersects the first circle at R above the x -axis and the line segment PQ at S . Find the maximum area of triangle QSR.

D Watch Video Solution

20. Solve $-\frac{\sin ^{3} \frac{x}{2}-\cos ^{3} \frac{x}{2}}{2+\sin x}=\frac{\cos x}{3}$
21. let $f(x)$ be the polynomial function. It satisfies the equation
$2+f(x) \cdot f(y)=f(x)+f(y)+f(x y)$ for all x and y . If
$f(2)=5$ find $f|f(2)|$.

(D) Watch Video Solution

22. Evaluate $\int_{0}^{\pi} \frac{e^{\cos x}}{e^{\cos x}+e^{-\cos x}} d x$.

- Watch Video Solution

23. Find the co-ordinates of all the points P on the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,for which the area of the triangle PON is maximum, where O denotes the origin and N , the foot of the perpendicular from O to tangent at P.
24. Find the equation of a curve passing through the point (1.1) if the perpendicular distance of the origin from the normal at any point $P(x, y)$ of the curve is equal to the distance of P from the x-axis.

(D) Watch Video Solution

25. Solve: $\left(x^{2}+4 y^{2}+4 x y\right) d y=(x+2 y+1) d x$.

D Watch Video Solution

26. If the normal to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ which is farthest from its centre be $\frac{x_{1}}{a}+\frac{y}{b}=1$ then value of
$\left[a^{2}+b^{2}\right]$ is equal to (where [.] represents the GIF)

(Watch Video Solution

27. $\sum_{n=0}^{\infty} \frac{1}{n!}\left[\sum_{k=0}^{n}(k+1) \int_{0}^{1} 2^{-(k+1) x} d x\right]$

(D) Watch Video Solution

28. Consider the family of circles $x^{2}+y^{2}=r^{2} 2<r<5$. If in the first quadrant, the common tangent to a circle of this family and the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ meets the axes at A and B then find the equation of the locus of middle point of $A B$.
29. Let T_{1}, T_{2} and be two tangents drawn from ($-2,0$) onto the circle $C: x^{2}+y^{2}=1$. Determine the circles touching C and having T_{1}, T_{2} as their pair of tangents. Further, find the equations of all possible common tangents to these circles when taken two at a time

D Watch Video Solution

30. The equation of two equal sides $A B$ and $A C$ of an isosceies triangle ABC are $x+y=5$ and $7 x-y=3$ respectively Find the equations of the side $B C$ if the area of the triangle of $A B C$ is 5 units

D Watch Video Solution

31. Find the equation of the largest circle with centre (1,0) that can be inscribed in the ellipse $x^{2}+4 y^{2}=16$

(Watch Video Solution

32. Prove that the circle $x^{2}+y^{2}-6 y+4=0$ and the parabola $y^{2}=x$ touch. Find the common tangent at the point of contact.

- Watch Video Solution

33. Find the equation of the ellipse whose foci are the points
$(1,2)$ and $(-3,2)$, and the length of the minor axis is $4 \sqrt{3}$.
34. Let $A B C$ and $P Q R$ be any two triangles in the same plane. Assume that the perpendiculars from the points A, B, C to the sides $Q R, R P, P Q$ respectively are concurrent. Using vector methods or otherwise,prove that the perpendiculars from $\quad P, Q, R \rightarrow B C, C A, A B$ respectively are also concurrent.

- Watch Video Solution

35. An unbiased dice, with faces numbered $1,2,3,4,5,6$, is thrown n times and the list of n numbers shown up is noted.

Then find the probability that among the numbers $1,2,3,4,5$,
6 only three numbers appear in this list and each number appears at least once.
36. Find the smallest positive values of $x a n d y$ satisfying $x-y=\frac{\pi}{4}$ and $\cot x+\cot y=2$

(Watch Video Solution

37. $\log _{\frac{3}{4}} \log _{8}\left(x^{2}+7\right)+\log _{\frac{1}{2}} \log _{\frac{1}{4}}\left(x^{2}+7\right)^{-1}=-2$.

D Watch Video Solution

38. Total number of solutions of the equation $x^{2}-4-[x]=0$ are (where (.) denotes the greatest integer function)
39. Let a, b be the roots of the equation $x^{2}-k x+k=0$, $k \in R$. If $a^{2}+b^{2}$ is the minimum then find the roots of the equation.

(D) Watch Video Solution

40. Two parabola have the focus $(3,2)$. Their directrices are the x-axis and the y-axis respectively. Then the slope of their common chord is

- Watch Video Solution

41. Let $\alpha \in R$. prove that a function $f: R-R$ is differentiable at α if and only if there is a function $g: R-R$
$f(x)-f(\alpha)=g(x)(x-\alpha), \forall x \in R$.

D Watch Video Solution

42. Find the $\lim _{x \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{2}}{\sqrt[3]{1-x}-\sqrt{1+x}}$.

(D) Watch Video Solution

43. Two parabolas $y_{2}=4 a\left(x-1 l_{1}\right)$ and $x_{2}=4 a\left(y-l_{2}\right)$ always touch one another, the quantities l_{1} and l_{2} are both variable.

Locus of their point of contact has the equation
44. Let $2 x^{2}+y^{2}-3 x y=0$ be the equation of a pair of tangents drawn from the origin O to a circle of radius 3 with centre in the first quadrant. If A is one of the points of contact, then the length of $O A$ is

(D) Watch Video Solution

45. Let $f(x), x \geq 0$, be a non-negative continuous function, and let $f(x)=\int_{0}^{x} f(t) d t, x \geq 0, \quad$ if \quad for some $c>0, f(x) \leq c F(x)$ for all $x \geq 0$, then show that $f(x)=0$ for all $x \geq 0$.
(D) Watch Video Solution
46. Let $b \neq 0$ and for $j=0,1,2, \ldots, n$. Let S_{j} be the area of the region bounded by Y_{-}axis and the curve $x \cdot e^{a y}=\sin b y, \frac{j \pi}{b} \leq y \leq \frac{(j+1) \pi}{b}$. Show that
$S_{0}, S_{1}, S_{2}, \ldots S_{n}$ are in geometric progression. Also, find their sum for $a=-1$ and $b=\pi$.

D Watch Video Solution

47. Let P be a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,0<b<a$ and let the line parallel to y-axis passing through P meet the circle $x^{2}+y^{2}=a^{2}$ at the point Q such that P and Q are on the same side of x-axis. For two positive real numbers r and s, find the locus of the point R on PQ such that $P R: R Q=r: s$ and P varies over the ellipse.
48. A hemi-spherical tank of radius 2 m is initially full of water and has an outlet of $12 \mathrm{~cm}^{2}$ cross-sectional area at the bottom. The outlet is opened at some instant. The flow through the outlet is according to the law $v(t)=\sqrt{0.62 g h(t)}$, where $v(t)$ and $h(t)$ are, respectively, the velocity of the flow through the outlet and the height of water level above the outlet and the height of water level above the outlet at time t, and g is the acceleration due to gravity. Find the time it takes to empty the tank.

D Watch Video Solution

49. I_{n} is the area of n sided refular polygon inscribed in a circle unit radius and O_{n} be the area of the polygon
circumscribing the given circle, prove that
$I_{n}=\frac{O_{n}}{2}\left(1+\sqrt{1-\left(\frac{2 I_{n}}{n}\right)^{2}}\right)$

D Watch Video Solution

50. For the circle $x^{2}+y^{2}=r^{2}$, find the value of r for which the area enclosed by the tangents drawn from the point $P(6,8)$ to the circle and the chord of contact and the chord of contact is maximum.

- Watch Video Solution

51. A right circular cone with radius R and height H contains a liquid which evaporates at a rate proportional to its surface area in contact with air (proportionality constant k is
positive). Suppose that $r(t)$ is the radius of the liquid cone at time t. The time after which the cone is empty is

- Watch Video Solution

52. If \vec{u}, vercv, \vec{w} be three noncoplanar unit vectors and α, β, γ the angles between \vec{u} and \vec{v}, \vec{v} and \vec{w}, \vec{w} and \vec{u} respectively, $\vec{x}, \vec{y}, \vec{z}$ unit vector along the bisectors of the angles α, β, γ respectively. Prove that:

$$
[\vec{x} \times \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x}]=\frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \frac{\sec ^{2} \alpha}{2} \frac{\sec ^{2} \beta}{2} \frac{\sec ^{2} \gamma}{2}
$$

- Watch Video Solution

53. If $\quad P(1)=0$ and $\frac{d P(x)}{d x}, \sin x+2 x \geq \frac{3 x(x+1)}{\pi}$

Explain the identity, if any, used in the proof.
54. Normals are drawn from a point P with slopes m_{1}, m_{2} and m_{3} are drawn from the point p not from the parabola $y^{2}=4 x$. For $m_{1} m_{2}=\alpha$, if the locus of the point P is a part of the parabola itself, then the value of α is (a) 1 (b)-2
(c) 2 (d) -1

D Watch Video Solution

55. Find a point on the curve $x^{2}+2 y^{2}=6$, whose distance from the line $x+y=7$, is minimum.
56. If a function $f:[-2 a, 2 a] \rightarrow R$ is an odd function such that, $f(x)=f(2 a-x)$ for $x \in[a, 2 a]$ and the left-hand derivative at $x=a$ is 0 , then find the left-hand derivative at $x=-a$.

(Watch Video Solution

57. A is targeting to B, B and C are targeting to A. probability of hitting the target by A, B and C are $2 / 3,1.2$ and $1 / 3$, respectively. If A is hit, then find the Probability that B hits the target and C does not.
58. $f:[0.4] \rightarrow R$ is a differentiable function. Then prove that for some $a, b \in(0,4), f^{2}(4)-f^{2}(0)=8 f^{\prime}(a) \cdot f(b)$.

- Watch Video Solution

59. Given a function $f:[0,4] \rightarrow R$ is differentiable ,then prove that for some
$\alpha, \beta \varepsilon(0,2), \int_{0}^{4} f(t) d t=2 \alpha f\left(\alpha^{2}\right)+2 \beta f\left(\beta^{2}\right)$.

- Watch Video Solution

60. If $f: R \rightarrow[0, \infty)$ be a function such that
$f(x-1)+f(x+1)=\sqrt{3}(f(x))$ then prove that
$f(x+12)=f(x)$.
61. Using Rolles theorem, prove that there is at least one root in $\left(45^{\frac{1}{100}}, 46\right)$ of the equation.
$P(x)=51 x^{101}-2323(x)^{100}-45 x+1035=0$.

D Watch Video Solution

62.

$A=\left[\begin{array}{lll}a & 1 & 0 \\ 1 & b & d \\ 1 & b & c\end{array}\right], B=\left[\begin{array}{lll}a & 1 & 1 \\ 0 & d & c \\ f & g & h\end{array}\right], U=\left[\begin{array}{l}f \\ g \\ h\end{array}\right], V=\left[\begin{array}{c}a^{2} \\ 0 \\ 0\end{array}\right]$
If there is a vector matrix X , such that $A X=U$ has infinitely
many solutions, then prove that $B X=V$ cannot have a unique solution. If $a f d \neq 0$. Then,prove that $B X=V$ has no solution.
63. Find the equation of circle touching the line $2 x+3 y+1=0$ at the point $(1,-1)$ and is orthogonal to the circle which has the line segment having end poitns ($0,-1$) and $(-2,3)$ as the diameter.

D Watch Video Solution

$$
\int\left(\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x\right) d x
$$

64.

$\sqrt{\sin ^{3} x \cos ^{3} x \sin (x-\alpha)}$

D Watch Video Solution

65. T is a parallelepiped in which A, B, C and D are vertices of one face and the face just above it has corresponding
vertices $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, T$ is now compressed to S with face $A B C D$ remaining same and shifted to $A ", B ", C ", D "$, in S. The volume of parallelepiped S is reduced to 90% of T. Prove that locus of is a plane.

(Watch Video Solution

66. $f^{\prime}(0)=\lim _{n \rightarrow \infty} n f\left(\frac{1}{n}\right)$ and $f(0)=0$ Using this, find 'lim_(n->0o)((n+1)(2/pi) $\left.\left.\cos ^{\wedge}(-1)(1 / n)-n\right)\right),\left|\cos ^{\wedge}(-1) 1 / n\right|$

(D) Watch Video Solution

67. If $y(x)=\int_{\frac{\pi^{2}}{16}}^{x^{2}} \frac{\cos x \cos \sqrt{\theta}}{1+\sin ^{2} \sqrt{\theta}} d \theta$ then find $y^{\prime}(\pi)$
68. At any point P on the parabola $y^{2}-2 y-4 x+5=0$ a tangent is drawn which meets the directrix at Q . Find the locus of point R which divides QP externally in the ratio $\frac{1}{2}: 1$

(Watch Video Solution

69. If a $\Delta A B C$ remains always similar to a given triangle and the point A is fixed and the point B always moves on a given straight line, then locus of C is (A) a circle (B) a straight line (C) a parabola (D) none of these

- Watch Video Solution

70. Find the range of values of t for which
$2 \sin t=\frac{1-2 x+5 x^{2}}{3 x^{2}-2 x-1}$

(D) Watch Video Solution

71. if $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq\left(x_{1}-x_{2}\right)^{2}$ Find the equation of gent to the curve $y=f(x)$ at the point $(1,2)$.

- Watch Video Solution

72. Find the equation of the common tangent to the circle $x^{2}+y^{2}=16$ and the ellipse $4 x^{2}+25 y^{2}=100$ cutting off positive intercepts on the axes of reference. Also, find the intercept on the common tangent between the coordinate axes.
73. If $\left[\begin{array}{lll}4 a^{2} & 4 a & 1 \\ 4 b^{2} & 4 b & 1 \\ 4 c^{2} & 4 c & 1\end{array}\right]\left[\begin{array}{c}f(-1) \\ f(1) \\ f(2)\end{array}\right]\left[\begin{array}{c}3 a^{2}+3 a \\ 3 b^{2}+3 b \\ 3 c^{2}+3 c\end{array}\right], f(x)$ is a
quadratic function and its maximum valueoccurs at a point
V.A is a point of intersection of $y=f(x)$ with X -axis and point B is such that chord $A B$ subtendsa right angle at V. Find the area enclosed by $\mathrm{f}(\mathrm{x})$ andchord AB .

- Watch Video Solution

74. The total number of runs scored If n matches is $\frac{n+1}{4}\left(2^{n+1}-n-2\right)$,where $n>1$ and the runs scored in $k^{t h}$ match are given by $k .2^{n+1-k}$, where $1 \leq k \leq n$. Find n
75. A square circumscribes the circle $|z-1|=\sqrt{2}$. If one of the vertices represents the complex number $2+i \sqrt{3}$ then find the complex numbers represented by the other vertices.

- Watch Video Solution

76.

Evaluate
$\int_{0}^{\pi} e^{|\cos x|}\left(2 \sin \left(\frac{1}{2} \cos x\right)+3 \cos \left(\frac{1}{2} \cos x\right)\right) \sin x d x$.

- Watch Video Solution

77. If $\quad f(x-y)=f(x) \cdot g(y)-f(y) \cdot g(x) \quad$ and
$g(x-y)=g(x) \cdot g(y)+f(x) . f(y)$ for all $x \in R$. If right handed derivative at $x=0$ exists for $f(x)$ find the derivative of $g(x)$ at $x=0$
