©゙’ doubtnut

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Objective Tests

Exercise

1. If the sum of first n terms of an $A P$ is $c n^{2}$, then the sum of
squares of these n terms is (2009) $\frac{n\left(4 n^{2}-1\right) c^{2}}{6}$
$\frac{n\left(4 n^{2}+1\right) c^{2}}{3} \frac{n\left(4 n^{2}-1\right) c^{2}}{3}$ (d) $\frac{n\left(4 n^{2}+1\right) c^{2}}{6}$
A. $n\left(4 n^{2}-1\right) \frac{c^{2}}{6}$
B. $n\left(4 n^{2}+1\right) \frac{c^{2}}{3}$
C. $n\left(4 n^{2}-1\right) \frac{c^{2}}{3}$
D. $n\left(4 n^{2}+1\right) \frac{c^{2}}{6}$

Answer:

- Watch Video Solution

2. The number of seven digit integers, with sum of the digits equal to 10 and formed by using the digits 1,2 and 3 only, is
A. 55
B. 66
C. 77
D. 88
3. Let $z=x+i y$ be a complex number where $x a n d y$ are integers. Then, the area of the rectangle whose vertices are the roots of the equation $z z^{3}+z z^{3}=350$ is 48 (b) 32 (c) 40 (d) 80
A. 48
B. 32
C. 40
D. 80

Answer:

4. Let $z=\cos \theta+i \sin \theta$. Then the value of
$\sum_{m \rightarrow 1-15} \operatorname{Img}\left(z^{2 m-1}\right)$ at $\theta=2^{\circ}$ is:
A. $\frac{1}{\sin 2^{\circ}}$
B. $\frac{1}{3} \sin 2^{\circ}$
C. $\frac{1}{2} \sin 2^{\circ}$
D. $\frac{1}{4} \sin 2^{\circ}$

Answer:

D Watch Video Solution

5. The locus of the orthocentre of the triangle formed by the lines

$$
(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+q)=0
$$

and $\mathrm{y}=0$, where $p \neq \cdot q$, is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line
A. a hyperbola
B. a parabola
C. an ellipse
D. a straight line

Answer:

D Watch Video Solution

6. Tangents drawn from the point $P(1,8)$ to the circle $x^{2}+y^{2}-6 x-4 y-11=0$ touch the circle at the points A and B. The equation of the circumcircle of the triangle $P A B$ is
(A) $x^{2}+y^{2}+4 x-6 y+19=0$
(B) $x^{2}+y^{2}-4 x-10 y+19=0$
(C) $x^{2}+y^{2}-2 x+6 y-29=0$
(D) $x^{2}+y^{2}-6 x-4 y+19=0$
A. $x^{2}+y^{2}+4 x-6 y+19=0$
B. $x^{2}+y^{2}-4 x-10 y+19=0$
C. $x^{2}+y^{2}-2 x+6 y-29=0$
D. $x^{2}+y^{2}-6 x-4 y+19=0$

Answer:

(D) Watch Video Solution

7. The normal at a point P on the ellipse $x^{2}+4 y^{2}=16$ meets the x -axis at Q. If M is the midpoint of the line segment $P Q$, then the locus of M intersects the latus rectums of the given
ellipse at points. $\quad\left(\pm \frac{(3 \sqrt{5})}{2} \pm \frac{2}{7}\right)$

$$
\begin{align*}
& \left(\pm \frac{(3 \sqrt{5})}{2} \pm \frac{\sqrt{19}}{7}\right)\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right) \tag{d}\\
& \left(\pm 2 \sqrt{3} \pm \frac{4 \sqrt{3}}{7}\right) \\
& \text { A. }\left(\pm 3 \frac{\sqrt{5}}{2}, \pm \frac{2}{7}\right) \\
& \text { B. }\left(\pm 3 \frac{\sqrt{5}}{2}, \pm \frac{\sqrt{19}}{7}\right) \\
& \text { C. }\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right) \\
& \text { D. }\left(\pm 2 \sqrt{3}, \pm 4 \frac{\sqrt{3}}{7}\right)
\end{align*}
$$

Answer:

- Watch Video Solution

8. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets is auxiliary circle at the point M. Then the area of the
triangle with vertices at A, M, and O (the origin) is $31 / 10$ (b)
29/10 (c) 21/10 (d) 27/10
A. $\frac{31}{10}$
B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$

Answer:

- Watch Video Solution

9.36. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b})$. $\vec{c} \times \vec{d}=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$ then a) \vec{a}, \vec{b} and \vec{c} are noncoplanar b) $\vec{b}, \vec{c}, \vec{d}$ are non -coplanar c) \vec{b}, \vec{d} are non parallel d) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel
A. $\vec{a}, \vec{b}, \vec{c}$ are noncoplanar
B. $\vec{b}, \vec{c}, \vec{d}$ are noncoplanar
C. \vec{b}, \vec{d} are nonparallel
D. \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel

Answer:

- Watch Video Solution

10. A line with positive direction cosines passes through the point $P(2,-1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. The length of the line segment PQ equals
A. 1
B. $\sqrt{2}$
C. $\sqrt{3}$
D. 2

Answer:

- Watch Video Solution

11. If $P(3,2,6)$ is a point in space and Q be a point on the line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $P Q$ is parallel to the plane $x-4 y+3 z=1$, is :
A. $\frac{1}{4}$
B. $-\frac{1}{4}$
C. $\frac{1}{8}$
D. $-\frac{1}{8}$

D Watch Video Solution

12. Let f be a non-negative function defined on the interval $[0,1]$.

If
$\int_{0}^{x} \sqrt{1-\left(f^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} f(t) d t, 0 \leq x \leq 1, \operatorname{and} f(0)=0$, then
$f\left(\frac{1}{2}\right)\left\langle\frac{1}{2} \operatorname{andf}\left(\frac{1}{3}\right)\right\rangle \frac{1}{3} \quad f\left(\frac{1}{2}\right)>\frac{1}{2} \operatorname{andf}\left(\frac{1}{3}\right)>\frac{1}{3}$
$f\left(\frac{1}{2}\right)<\frac{1}{2} \operatorname{andf}\left(\frac{1}{3}\right)<\frac{1}{3} f\left(\frac{1}{2}\right)>\frac{1}{2} \operatorname{andf}\left(\frac{1}{3}\right)<\frac{1}{3}$
A. $f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $f\left(\frac{1}{3}\right)>\frac{1}{3}$
B. $f\left(\frac{1}{2}\right)>\frac{1}{2}$ and $f\left(\frac{1}{3}\right)>\frac{1}{3}$
C. $f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $f\left(\frac{1}{3}\right)<\frac{1}{3}$
D. $f\left(\frac{1}{2}\right)>\frac{1}{2}$ and $f\left(\frac{1}{3}\right)<\frac{1}{3}$

- Watch Video Solution

13. यदि $\frac{\sin ^{4} x}{2}+\frac{\cos ^{4} x}{3}=\frac{1}{5}$,तब
A. $\tan ^{2} x=\frac{3}{2}$
B. $\frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27}=\frac{1}{125}$
C. $\tan ^{2} x=\frac{2}{3}$
D. $\frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27}=\frac{2}{125}$

Answer:

- Watch Video Solution

14. for $0<\theta<\frac{\pi}{2}$ the solution(s) of $\sum_{m=1}^{6} \operatorname{cosec}\left(\theta+\frac{(m-1) \pi}{4}\right) \operatorname{cosec}\left(\theta+\frac{m \pi}{n}\right)=4 \sqrt{2}$ is (are):
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{12}$
D. $5 \frac{\pi}{12}$

Answer:

- Watch Video Solution

15. In a triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \sin ^{2} A / 2$

If a, b and c denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then
A. $b+c=4 a$
B. $b+c=2 a$
C. locus of A is an ellipse
D. locus of A is a pair of straight lines

Answer:

- Watch Video Solution

16. The tangent PT and the normal PN to the parabola $y^{2}=4 a x$ at a point P on it meet its axis at points T and N, respectively. The locus of the centroid of the triangle PTN is a parabola whose:
A. vertex $=\left(2 \frac{a}{3}, 0\right)$
B. directrix is $x=0$
C. latus rectum $=2 \frac{a}{3}$
D. $\mathrm{focus}=(a, 0)$

D Watch Video Solution

17. An ellipse intersects the hyperbola $2 x^{2}-2 y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
A. equation of the ellipse is $x^{2}+2 y^{2}=2$
B. foci of the ellipse are $(\pm 1,0)$
C. equation of the ellipse is $x^{2}+2 y^{2}=4$
D. foci of the ellipse are $(\pm \sqrt{2}, 0)$

Answer:

18. Let $\mathrm{L}=\lim _{x \rightarrow 0} \frac{a-\sqrt{a^{2}-x^{2}}-\frac{x^{2}}{4}}{x^{4}}, \mathrm{a}>0$. If L is finite, then
A. $a=2$
B. $a=1$
C. $L=\frac{1}{64}$
D. $L=\frac{1}{32}$

Answer:

- Watch Video Solution

19. For the function $f(x)=x \cos \frac{1}{x}, x \geq 1$
A. for the least one $x \in[1, \infty), f(x+2)-f(x)<2$
B. $\lim _{x \rightarrow \infty} f^{\prime}(x)=1$
C. for all $x \in[1, \infty), f(x+2)-f(x) .2$
D. $f^{\prime}(x)$ is strictlydecreasing in $[1, \mathrm{oo}]^{\prime}$.

Answer:

- Watch Video Solution

20. If $I_{n}=\int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+\pi^{x}\right) \sin x} d x, n=0,1,2, \ldots \ldots$. then which one of the following is not true ?
A. $I_{n}=I_{n}+2$
B. $\sum_{m=1}^{10} I_{2 m+1}=10 \pi$
C. $\sum_{m=1}^{10} I_{2 m}=0$
D. $I_{n}=I_{n}+1$
21. The area of the region bounded by the curve $y=e^{x}$ and lines $x=0$ and $y=e$ is
A. $e-1$
B. $\int_{1}^{e} \log _{e}(e+1-y) d y$
C. $e-\int_{0}^{1} e^{x} d x$
D. $\int_{1}^{e} \log _{e} y d y$

Answer:

- Watch Video Solution

22. Q. Let p and q real number such that $p \neq 0, p^{2} \neq q$ and $p^{2} \neq-q$. if α and β are non-zero complex number satisfying
$\alpha+\beta=-p$ and $\alpha^{3}+\beta^{3}=q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is
A. $\left(P^{\wedge} 3+q\right) x^{\wedge} 2-\left(P^{\wedge} 3+2 q\right) x+\left(p^{\wedge} 3+q\right)=0^{`}$
B. $\left(P^{\wedge} 3+q\right) x^{\wedge} 2-\left(p^{\wedge} 3-2 q\right) x+\left(p^{\wedge} 3+q\right)=0^{`}$
C. $\left(P^{\wedge} 3-q\right) x^{\wedge} 2-\left(5 P^{\wedge} 3-2 q\right) x+\left(p^{\wedge} 3-q\right)=0{ }^{`}$
D. $\left(P^{\wedge} 3-q\right) x^{\wedge} 2-\left(5 P^{\wedge} 3+2 q\right) x+\left(p^{\wedge} 3-q\right)=0 `$

Answer:

D Watch Video Solution

23. Let $S=\{1,, 2,34\}$. The total number of unordered pairs of disjoint subsets of S is equal a. 25 b. 34 c. 42 d. 41
A. 25
B. 34
C. 42
D. 41

Answer:

- Watch Video Solution

24. For $r=0,1, \ldots, 10$, let A_{r}, B_{r}, and C_{r} denote, respectively, the coefficient of x^{r} in the expansions of $(1+x)^{10},(+x)^{20}$ and $(1+x)^{30}$.Then $\sum_{r=1}^{10} A_{r}\left(B_{10} B_{r}-C_{10} A_{r}\right)$ is equal to
A. $B_{10}-C_{10}$
B. $a_{10}\left(B_{10}^{2}-C_{10} A_{10}\right)$
C. 0
D. $C_{10}-B_{10}$

- Watch Video Solution

25. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A[x y z]=[100]$ has exactly two distinct solution is a. 0 b. $2^{9}-1 \mathrm{c} .168 \mathrm{~d} .2$
A. 0
B. $2^{9}-1$
C. 168
D. 2

Answer:

26. If the angle A, B and C of a triangle are in arithmetic progession and if a, b and c denote the lengths of the sides to A , B and C respectively, then the value of the expression $\frac{a}{b} \sin 2 \mathrm{C}$ $+\frac{c}{a} \sin 2 \mathrm{~A}$ is
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. 1
D. $\sqrt{3}$

Answer:

- Watch Video Solution

27. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$. The side
$A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $4 \frac{\sqrt{5}}{9}$

Answer:

- Watch Video Solution

28. The equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the
straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is:
A. $x+2 y-2 z=0$
B. $3 x+2 y-2 z=0$
C. $x-2 y+z=0$
D. $5 x+2 y-4 z=0$

Answer:

- Watch Video Solution

29. If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0, i s 5$, then the foot of the perpendicular from P to the place is a. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$ b. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$ c. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d. $\left(\frac{2}{3},-\frac{1}{3},-\frac{5}{3}\right)$
A. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
B. $\left(\frac{4}{3}, \frac{4}{3}, \frac{1}{3}\right)$
C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
D. $\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$

Answer:

- Watch Video Solution

30. Let f, g and h be real-valued functions defined on the interval $[0,1]$ by $f(x)=e^{x^{2}}+e^{-x^{2}}, g(x)=x e^{x^{2}}+e^{-x^{2}}$ and $h(x)=x^{2} e^{x^{2}}+e^{-x^{2}}$. if a, b and c denote respectively, the absolute maximum of f, g and h on $[0,1]$ then
A. $a=b$ and $b!+c^{`}$
B. $c=a$ and $\mathrm{a}!+\mathrm{b}{ }^{`}$
C. $a \neq b$ and $b!+c$
D. $a=b=c$

Answer:

- Watch Video Solution

31. Let f be a real-valued function defined on the inverval $(-1,1)$ such that $e^{-x} f(x)=2+\int_{0}^{x} \sqrt{t^{4}+1} d t$, for all, $x \in(-1,1)$ andletf f^{-1} be the inverse function of f. Then $\left(f^{-1}\right)^{\prime}(2)$ is equal to 1 (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{e}$
A. 1
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{e}$

- Watch Video Solution

32. Let ω be a complex cube root unity with $\omega \neq 1$. A fair die is thrown three times. If $r_{1}, r_{2} a n d r_{3}$ are the numbers obtained on the die, then the probability that $\omega^{r 1}+\omega^{r 2}+\omega^{r 3}=0$ is $1 / 18 \mathrm{~b}$. $1 / 9$ c. $2 / 9$ d. $1 / 36$
A. $\frac{1}{18}$
B. $\frac{1}{9}$
C. $\frac{2}{9}$
D. $\frac{1}{36}$

Answer:

- Watch Video Solution

33. A signal which can be green or red with probability $\frac{4}{5}$ and $\frac{1}{5}$ respectively, is received by station A and then and 3 transmitted to station B. The probability of each station receiving the signal correctly is $\frac{3}{4}$ If the signal received at station B is green, then the probability that the original signal was green is (a) $\frac{3}{5}$ (b) $\frac{6}{7}$ (d) $\frac{20}{23}$ (d) $\frac{9}{20}$
A. $\frac{3}{5}$
B. $\frac{6}{7}$
C. $\frac{20}{23}$
D. $\frac{9}{20}$

Answer:

- Watch Video Solution

34. Let z_{1} and z_{2} be two distinct complex numbers and $z=(1-t) z_{1}+i z_{2}$, for some real number t with $0<t<1$ and $i=\sqrt{-1}$. If $\arg (\mathrm{w})$ denotes the principal argument of a nonzero compolex number w, then
A. $\left|z-z_{1}\right|+\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right|$
B. ${ }^{`} \arg \left|z-z_{-} 1\right|=a r g\left|z-z _2\right|$
C.

$$
\left|\begin{array}{cc}
z-z_{1} & \bar{z}-\bar{z}_{1} \\
z_{2}-z_{1} & \bar{z}_{2}-\bar{z}_{1}
\end{array}\right|=0 .
$$

D. ${ }^{\prime} \arg \left|z-z_{-} 1\right|=\arg \left|z_{-} 2-z_{-} 1\right|$

Answer:

35. Let ABC be a triangle such that $\angle A C B=\frac{\pi}{6}$ and let a, b and C denote the lengths of the side opposite to A, B and C respectively. The value of x for which $a=x^{2}+x+1, b=x^{2}-1$ and $c=2 x+1$ is
A. $-(2+\sqrt{3})$
B. $\sqrt{3}+1$
C. $2+\sqrt{3}$
D. $4 \sqrt{3}$

Answer:

- Watch Video Solution

36. Let A and B be two distinct points on the parabola $y^{2}=4 x$. If the axis of the parabola touches a circle of radius r having
$A B$ as its diameter, then the slope of the line joining A and B can be (A) $-\frac{1}{r}$ (B) $\frac{1}{r}$ (C) $\frac{2}{r}$ (D) $-\frac{2}{r}$
A. $-\frac{1}{r}$
B. $\frac{1}{r}$
C. $\frac{2}{r}$
D. $-\frac{2}{r}$

Answer:

