

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Objective Tests

Exercise

1. If the sum of first *n* terms of an *AP* is cn^2 , then the sum of squares of these *n* terms is (2009) $\frac{n(4n^2-1)c^2}{6}$ (b) $\frac{n(4n^2+1)c^2}{3} \frac{n(4n^2-1)c^2}{3}$ (d) $\frac{n(4n^2+1)c^2}{6}$ A. $n(4n^2-1)\frac{c^2}{6}$ B. $n(4n^2+1)\frac{c^2}{3}$

C.
$$nig(4n^2-1ig)rac{c^2}{3}$$

D. $nig(4n^2+1ig)rac{c^2}{6}$

Watch Video Solution

2. The number of seven digit integers, with sum of the digits equal to 10 and formed by using the digits 1, 2 and 3 only, is

A. 55

B. 66

C. 77

D. 88

3. Let z = x + iy be a complex number where xandy are integers. Then, the area of the rectangle whose vertices are the roots of the equation $zz^3 + zz^3 = 350$ is 48 (b) 32 (c) 40 (d) 80

A. 48

B. 32

C. 40

D. 80

4. Let
$$z = \cos \theta + i \sin \theta$$
. Then the value of

$$\sum_{m \to 1-15} Img(z^{2m-1}) \text{ at } \theta = 2^{\circ} \text{ is:}$$
A. $\frac{1}{\sin 2^{\circ}}$
B. $\frac{1}{3} \sin 2^{\circ}$
C. $\frac{1}{2} \sin 2^{\circ}$
D. $\frac{1}{4} \sin 2^{\circ}$

Watch Video Solution

5. The locus of the orthocentre of the triangle formed by the

lines

$$(1+p)x-py+p(1+p)=0,\,(1+q)x-qy+q(1+q)=0$$

and y = 0, where $p
eq \ \cdot q$, is (A) a hyperbola (B) a parabola (C) an

ellipse (D) a straight line

A. a hyperbola

B. a parabola

C. an ellipse

D. a straight line

Answer:

Watch Video Solution

6. Tangents drawn from the point P(1,8) to the circle $x^2 + y^2 - 6x - 4y - 11 = 0$ touch the circle at the points Aand B. The equation of the circumcircle of the triangle PAB is (A) $x^2 + y^2 + 4x - 6y + 19 = 0$ (B) $x^2 + y^2 - 4x - 10y + 19 = 0$

(C)
$$x^2 + y^2 - 2x + 6y - 29 = 0$$

(D) $x^2 + y^2 - 6x - 4y + 19 = 0$
A. $x^2 + y^2 + 4x - 6y + 19 = 0$
B. $x^2 + y^2 - 4x - 10y + 19 = 0$
C. $x^2 + y^2 - 2x + 6y - 29 = 0$
D. $x^2 + y^2 - 6x - 4y + 19 = 0$

Watch Video Solution

7. The normal at a point P on the ellipse $x^2 + 4y^2 = 16$ meets the x-axis at Q. If M is the midpoint of the line segment PQ, then the locus of M intersects the latus rectums of the given

ellipse at points.

$$\left(\pm \frac{\left(3\sqrt{5}\right)}{2} \pm \frac{2}{7}\right)$$
 (b)

$$\begin{pmatrix} \pm \frac{\left(3\sqrt{5}\right)}{2} \pm \frac{\sqrt{19}}{7} \\ \pm 2\sqrt{3} \pm \frac{4\sqrt{3}}{7} \end{pmatrix}$$

A. $\left(\pm 3\frac{\sqrt{5}}{2}, \pm \frac{2}{7}\right)$
B. $\left(\pm 3\frac{\sqrt{5}}{2}, \pm \frac{\sqrt{19}}{7}\right)$
C. $\left(\pm 2\sqrt{3}, \pm \frac{1}{7}\right)$
D $\left(\pm 2\sqrt{3}, \pm \frac{4\sqrt{3}}{7}\right)$

$$\left(\pm 2\sqrt{3}, \pm \frac{1}{7}\right)$$
 (d)

A.
$$\left(\pm 3\frac{\sqrt{5}}{2}, \pm \frac{2}{7}\right)$$

B. $\left(\pm 3\frac{\sqrt{5}}{2}, \pm \frac{\sqrt{19}}{7}\right)$
C. $\left(\pm 2\sqrt{3}, \pm \frac{1}{7}\right)$
D. $\left(\pm 2\sqrt{3}, \pm 4\frac{\sqrt{3}}{7}\right)$

8. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^2+9y^2=9$ meets is auxiliary circle at the point M. Then the area of the

triangle with vertices at $A, M, \,$ and O (the origin) is 31/10 (b) 29/10 (c) 21/10 (d) 27/10

A. $\frac{31}{10}$ B. $\frac{29}{10}$ C. $\frac{21}{10}$ D. $\frac{27}{10}$

Answer:

9. 36. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are unit vectors such that $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$.
 $\overrightarrow{c} \times \overrightarrow{d} = 1$ and \overrightarrow{a} . $\overrightarrow{c} = \frac{1}{2}$ then a) \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-
coplanar b) \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} are non -coplanar c) \overrightarrow{b} , \overrightarrow{d} are non parallel
d) \overrightarrow{a} , \overrightarrow{d} are parallel and \overrightarrow{b} , \overrightarrow{c} are parallel

- B. $\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$ are noncoplanar
- $\mathbf{C}, \overrightarrow{b}, \overrightarrow{d}$ are nonparallel
- D. $\overrightarrow{a}, \overrightarrow{d}$ are parallel and $\overrightarrow{b}, \overrightarrow{c}$ are parallel

10. A line with positive direction cosines passes through the point P(2, -1, 2) and makes equal angles with the coordinate axes. The line meets the plane 2x + y + z = 9 at point Q. The length of the line segment PQ equals

C.
$$\sqrt{3}$$

D. 2

Answer:

Watch Video Solution

11. If P(3, 2, 6) is a point in space and Q be a point on the line $\overrightarrow{r} = (\hat{i} - \hat{j} + 2\hat{k}) + \mu(-3\hat{i} + \hat{j} + 5\hat{k})$. Then the value of μ for which the vector PQ is parallel to the plane x - 4y + 3z = 1, is :

A.
$$\frac{1}{4}$$

B. $-\frac{1}{4}$
C. $\frac{1}{8}$
D. $-\frac{1}{8}$

Watch Video Solution

12. Let f be a non-negative function defined on the interval $[0,1]_{\cdot}$

$$\int_{0}^{x} \sqrt{1 - (f'(t))^{2}} dt = \int_{0}^{x} f(t) dt, 0 \le x \le 1, and f(0) = 0, then$$

$$f\left(\frac{1}{2}\right) \left\langle \frac{1}{2} and f\left(\frac{1}{3}\right) \right\rangle \frac{1}{3} \qquad f\left(\frac{1}{2}\right) > \frac{1}{2} and f\left(\frac{1}{3}\right) > \frac{1}{3}$$

$$f\left(\frac{1}{2}\right) < \frac{1}{2} and f\left(\frac{1}{3}\right) < \frac{1}{3} f\left(\frac{1}{2}\right) > \frac{1}{2} and f\left(\frac{1}{3}\right) < \frac{1}{3}$$

$$A. f\left(\frac{1}{2}\right) < \frac{1}{2} and f\left(\frac{1}{3}\right) > \frac{1}{3}$$

$$B. f\left(\frac{1}{2}\right) > \frac{1}{2} and f\left(\frac{1}{3}\right) > \frac{1}{3}$$

$$\begin{array}{l} \mathsf{C.} \ f\!\left(\frac{1}{2}\right) < \frac{1}{2} \ \mathsf{and} \ f\!\left(\frac{1}{3}\right) < \frac{1}{3} \\ \mathsf{D.} \ f\!\left(\frac{1}{2}\right) > \frac{1}{2} \ \mathsf{and} \ f\!\left(\frac{1}{3}\right) < \frac{1}{3} \end{array}$$

13. यदि
$$\frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5}$$
,तब
A. $\tan^2 x = \frac{3}{2}$
B. $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{1}{125}$
C. $\tan^2 x = \frac{2}{3}$
D. $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{2}{125}$

14. for
$$0 < \theta < \frac{\pi}{2}$$
 the solution(s) of $\sum_{m=1}^{6} cosec \left(\theta + \frac{(m-1)\pi}{4} \right) cosec \left(\theta + \frac{m\pi}{n} \right) = 4\sqrt{2}$ is (are):

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{12}$
D. $5\frac{\pi}{12}$

Watch Video Solution

15. In a triangle ABC with fixed base BC, the vertex A moves such that $\cos B + \cos C = 4 \sin^2 A/2$

If a, b and c denote the lengths of the sides of the triangle opposite to the angles A,B and C respectively, then

A.
$$b+c=4a$$

 $\mathsf{B}.\,b+c=2a$

C. locus of A is an ellipse

D. locus of A is a pair of straight lines

Answer:

Watch Video Solution

16. The tangent PT and the normal PN to the parabola $y^2 = 4ax$ at a point P on it meet its axis at points T and N, respectively. The locus of the centroid of the triangle PTN is a parabola whose:

A. vertex=
$$\left(2rac{a}{3},0
ight)$$

- B. directrix is x = 0
- C. latus rectum= $2\frac{a}{3}$

D. focus=(a, 0)

Watch Video Solution

17. An ellipse intersects the hyperbola $2x^2 - 2y^2 = 1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then

A. equation of the ellipse is $x^2+2y^2=2$

B. foci of the ellipse are $(\pm 1, 0)$

C. equation of the ellipse is $x^2+2y^2=4$

D. foci of the ellipse are $ig(\pm\sqrt{2},0ig)$

18. Let L =
$$\lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2} - \frac{x^2}{4}}{x^4}$$
, a>0.If L is finite, then
A. $a = 2$
B. $a = 1$
C. $L = \frac{1}{64}$
D. $L = \frac{1}{32}$

Watch Video Solution

19. For the function
$$f(x)=x{
m cos}{1\over x}, x\ge 1$$

A. for the least one $x\in [1,\infty),$ f(x+2)-f(x)<2

B.
$$\lim_{x o \infty} \; f'(x) = 1$$

C. for all
$$x\in [1,\infty),$$
 $f(x+2)-f(x).2$

D. f'(x) is strictlydecreasing in [1,00]`.

Answer:

Watch Video Solution

20. If
$$I_n=\int_{-\pi}^{\pi}rac{\sin nx}{(1+\pi^x)\sin x}\,dx, n=0,1,2,.....$$
 then which

one of the following is not true?

A.
$$I_n=I_n+2$$

B.
$$\sum_{m=1}^{10} I_{2m+1} = 10\pi$$

C. $\sum_{m=1}^{10} I_{2m} = 0$

 $\mathsf{D}.\,I_n=I_n+1$

21. The area of the region bounded by the curve $y = e^x$ and lines x=0 and y=e is

A.
$$e-1$$

B. $\int_1^e \log_e(e+1-y)dy$
C. $e-\int_0^1 e^x dx$
D. $\int_1^e \log_e y dy$

Answer:

Watch Video Solution

22. Q. Let p and q real number such that $p
eq 0, p^2
eq q$ and $p^2
eq -q$. if lpha and eta are non-zero complex number satisfying

$$\alpha + \beta = -p$$
 and $\alpha^3 + \beta^3 = q$, then a quadratic equation
having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is
A. (P^3 +q) x^2 - (P^3 + 2q) x+ (p^3 +q)=0`
B. (P^3 +q) x^2 - (P^3 - 2q) x+ (p^3 +q)=0`
C. (P^3 -q) x^2 - (5P^3 - 2q) x+ (p^3 -q)=0`
D. (P^3 -q) x^2 - (5P^3 + 2q) x+ (p^3 -q)=0`

Watch Video Solution

23. Let $S=\{1,\,,2,\,34\}$. The total number of unordered pairs of disjoint subsets of S is equal a.25 b. 34 c. 42 d. 41

A. 25

B. 34

C. 42

D. 41

Answer:

Watch Video Solution

24. For r = 0, 1, ..., 10, let A_r, B_r , and C_r denote, respectively, the coefficient of x^r in the expansions of $(1+x)^{10}, (+x)^{20}$ and $(1+x)^{30}$.Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to A. $B_{10} - C_{10}$

B. $a_{10} \left(B_{10}^2 - C_{10} A_{10} \right)$

C. 0

D. $C_{10} - B_{10}$

25. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system A[xyz] = [100] has exactly two distinct solution is a. 0 b. $2^9 - 1$ c. 168 d. 2

A. 0

 $B. 2^9 - 1$

C. 168

D. 2

26. If the angle A , B and C of a triangle are in arithmetic progession and if a , b and c denote the lengths of the sides to A , B and C respectively , then the value of the expression $\frac{a}{b}$ sin 2C + $\frac{c}{a}$ sin 2A is

A.
$$\frac{1}{2}$$

B. $\frac{\sqrt{3}}{2}$

C. 1

D.
$$\sqrt{3}$$

Answer:

Watch Video Solution

27. Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{A}B = 2\hat{i} + 10\hat{j} + 11\hat{k}and\overrightarrow{A}D = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angel α is given

by
$$\frac{8}{9}$$
 b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4\sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $4\frac{\sqrt{5}}{9}$

Answer:

28. The equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the

straight lines
$$\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$$
 and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is :

A.
$$x + 2y - 2z = 0$$

B.
$$3x + 2y - 2z = 0$$

C.
$$x - 2y + z = 0$$

D.
$$5x + 2y - 4z = 0$$

Watch Video Solution

29. If the distance of the point P(1, -2, 1) from the plane $x + 2y - 2z = \alpha$, where $\alpha > 0$, is5, then the foot of the perpendicular from P to the place is a. $\left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)$ b. $\left(\frac{4}{3}, -\frac{4}{3}, \frac{1}{3}\right)$ c. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d. $\left(\frac{2}{3}, -\frac{1}{3}, -\frac{5}{3}\right)$ A. $\left(\frac{8}{3}, \frac{4}{3}, -\frac{7}{3}\right)$

B.
$$\left(\frac{4}{3}, \frac{4}{3}, \frac{1}{3}\right)$$

C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
D. $\left(\frac{2}{3}, -\frac{1}{3}, \frac{5}{2}\right)$

30. Let f, g and h be real-valued functions defined on the interval [0, 1] by $f(x) = e^{x^2} + e^{-x^2}$, $g(x) = xe^{x^2} + e^{-x^2}$ and $h(x) = x^2e^{x^2} + e^{-x^2}$. If a, b and c denote respectively, the absolute maximum of f, g and h on [0, 1] then

A. a = b and b!+c`

B. c = a and a!+b`

C. $a \neq b$ and b! + c

D.
$$a = b = c$$

Watch Video Solution

31. Let f be a real-valued function defined on the inverval (-1, 1) such that $e^{-x}f(x) = 2 + \int_0^x \sqrt{t^4 + 1}dt$, for all, $x \in (-1, 1)$ and $let f^{-1}$ be the inverse function of f. Then $(f^{-1})'(2)$ is equal to 1 (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{e}$

A. 1

B.
$$\frac{1}{3}$$

C. $\frac{1}{2}$
D. $\frac{1}{e}$

32. Let ω be a complex cube root unity with $\omega \neq 1$. A fair die is thrown three times. If r_1 , r_2andr_3 are the numbers obtained on the die, then the probability that $\omega^{r1} + \omega^{r2} + \omega^{r3} = 0$ is 1/18 b. 1/9 c. 2/9 d. 1/36

Answer:

33. A signal which can be green or red with probability $\frac{4}{5}$ and $\frac{1}{5}$ respectively, is received by station A and then and 3 transmitted to station B. The probability of each station receiving the signal correctly is $\frac{3}{4}$ If the signal received at station B is green, then the probability that the original signal was green is (a) $\frac{3}{5}$ (b) $\frac{6}{7}$ (d) $\frac{20}{23}$ (d) $\frac{9}{20}$

A.
$$\frac{3}{5}$$

B. $\frac{6}{7}$
C. $\frac{20}{23}$
D. $\frac{9}{20}$

Answer:

34. Let z_1 and z_2 be two distinct complex numbers and $z = (1-t)z_1 + iz_2$, for some real number t with 0 < t < 1 and $i = \sqrt{-1}$. If arg(w) denotes the principal argument of a non-zero compolex number w, then

A.
$$|z - z_1| + |z - z_2| = |z_1 - z_2|$$

C.

$$\begin{vmatrix} z - z_1 & \overline{z} - \overline{z}_1 \\ z_2 - z_1 & \overline{z}_2 - \overline{z}_1 \end{vmatrix} = 0$$

Answer:

35. Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a , b and c denote the lengths of the side opposite to A ,B and C respectively. The value of x for which $a = x^2 + x + 1, b = x^2 - 1$ and c = 2x + 1 is A. $-(2 + \sqrt{3})$

- B. $\sqrt{3} + 1$
- $\mathsf{C.}\,2+\sqrt{3}$
- D. $4\sqrt{3}$

Answer:

36. Let A and B be two distinct points on the parabola $y^2 = 4x$. If the axis of the parabola touches a circle of radius r having

AB as its diameter, then the slope of the line joining $A\;\;{\rm and}\;\;B$

can be (A) $-rac{1}{r}$ (B) $rac{1}{r}$ (C) $rac{2}{r}$ (D) $-rac{2}{r}$

A.
$$-\frac{1}{r}$$

B. $\frac{1}{r}$
C. $\frac{2}{r}$
D. $-\frac{2}{r}$

Answer: