© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Pair of Straight Lines and Transformation of Axes

Example

1. The four straight lines given by the equations
$2 x^{2}+7 x y-12 y^{2}=0$ and $12 x^{2}+7 x y-12 y^{2}-x+7 y-1=0$
lie along the sides of a

- Watch Video Solution

2. Show that straight lines $\left(A^{2}-3 b^{2}\right) x^{2}+8 A B x y\left(b^{2}-3 A^{2}\right) y^{2}=0$ form with the line $A x+B y+C=0 \quad$ an equilateral triangle of area $\frac{C^{2}}{\sqrt{3\left(A^{2}+B^{2}\right)}}$.

D Watch Video Solution

3. If the equation

$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents two straights lines, then the product of the perpendicular from the origin on these straight lines, is

- Watch Video Solution

4. The pair of lines joining origin to the points of intersection of, the two curves $a x^{2}+2 h x y+b y^{2}+2 g x=0$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}+2 g^{\prime} x=0$ will be at right angles, if

- Watch Video Solution

5. If two of the lines represented by $a x^{4}+b x^{3} y+c x^{2} y^{2}+d x y^{3}+a y^{4}=0$ bisects the angle between the other two, then

D Watch Video Solution

6. The changed equation of locus $x^{2}+6 x y+y^{2}=1$ when the lines $x+y=0$ and $x-y+1=0$ are taken as the new x and y axis respectively is given by

- Watch Video Solution

Exercise

1. Prove that the bisectors of the between the lines $a x^{2}+a c x y+c y^{2}=0$ and
$\left(3+\frac{1}{c}\right) x^{2}+x y+\left(3+\frac{1}{a}\right) y^{2}=0$ are always the same.

- Watch Video Solution

2. If the pairs of lines $a x^{2}+2 h x y+b y^{2}=0$ and $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$ have one line in common, then $\left(a b^{\prime}-a^{\prime} b\right)^{2}$ is equal to
3. Find the condition that the one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$
may be perpendicular to one of the lines given by $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$

- Watch Video Solution

4. Show that the area of the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $\mid \mathrm{x}+\mathrm{my}+\mathrm{n}=0$
is $\frac{n^{2} \sqrt{\left(h^{2}-a b\right)}}{\left|\left(a m^{2}-2 h l m+b l^{2}\right)\right|}$

- Watch Video Solution

5. A pair of perpendicular straight lines is drawn through the origin forming with the line $2 x+3 y=6$ an isosceles triangle
right-angled at the origin. The equation to the line pair is $5 x^{2}-24 x y-5 y^{2}=0 \quad 5 x^{2}-26 x y-5 y^{2}=0$
$5 x^{2}+24 x y-5 y^{2}=05 x^{2}+26 x y-5 y^{2}=0$

- Watch Video Solution

6. Show that the centroid $\left(x^{\prime}, y^{\prime}\right)$ ofthe \triangle withsides $a x^{\wedge} 2+2 h x y+b y^{\wedge} 2=0$ and $1 x+m y=1$, is given by
$\frac{x^{\prime}}{b l-h m}=\frac{y^{\prime}}{a m-h l}=\frac{2}{3\left(a m^{2}-2 h l m+b l^{2}\right)}$

(D) Watch Video Solution

7. If the lines $a x^{2}+2 h x y+b y^{2}=0$ be two sides of a parallelogram and the line $\mid x+m y=1$ be one of its diagonal, show that the equation of the other diagonal is y (bl$h m)=x(a m-h l)$.

- Watch Video Solution

8. The straight lines represented by $(y-m x)^{2}=a^{2}\left(1+m^{2}\right)$ and $(y-n x)^{2}=a^{2}\left(1+n^{2}\right)$ from a rectangle (b) rhombus trapezium (d) none of these

- Watch Video Solution

9. Find the combined equation of the straight lines passing through the point $(1,1)$ and parallel to the lines represented by the equation $. z^{2}-5 x y+4 y^{2}+x+2 y-2=0$.

- Watch Video Solution

10. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ resents a pair of parallel lines then prove that

(D) Watch Video Solution

11. If the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is rotated about the origin through 90°, then find the equations in the new position.

(D) Watch Video Solution

12. The new equation of the curve
$4(x-2 y+1)^{2}+9(2 x+y+2)^{2}=25$, if the lines $2 x+y+2=0$ and $x-2 y+1=0$ are taken as the new x and y axes respectively is

- Watch Video Solution

13. The acute angle between the lines given by $x^{2}+2(\operatorname{cosec} \theta) x y+y^{2}=0$ is

(D) Watch Video Solution

14. The difference of the slopes of the lines given by the equation $x^{2}\left(\sec ^{2} \theta-\sin ^{2} \theta\right)-2 x y \tan \theta+y^{2} \sin ^{2} \theta=0$ is.

- Watch Video Solution

15. If the pair of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair, then

- Watch Video Solution

16. The equation $12 x^{2}+7 x y-12 y^{2}-18 x+y+6=0$ represents

- Watch Video Solution

17. The number of values of λ for which the bisectors of the angle between the lines
$a x^{2}+2 h x y+b y^{2}+\lambda\left(x^{2}+y^{2}\right)=0$ are the same as those of $a x^{2}+2 h x y+b y^{2}=0$ is
A. two
B. one
C. zero
D. infinite

Answer:

- Watch Video Solution

18. If one of the lines of $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the axes, in the first quadrant, then
A. $(a-b)^{2}=4 h^{2}$
B. $(a+b)^{2}+4 h^{2}=0$
C. $(a+b)^{2}=4 h^{2}$
D. $(a-b)^{2}+4 h^{2}=0$

Answer:

19. The equation $(x+y+1)^{2}+k\left(x^{2}+y^{2}+1\right)=0$ represents two straight lines then one of the possible values of k is
A. $k=0$
B. $k=3$
C. $\mathrm{k}=0$ or -3
D. none of these

Answer:

(Watch Video Solution

20. The equation $4 x^{2}-24 x y+11 y^{2}=0$ represents
A. two parallel lines
B. a circle
C. two perpendicular lines
D. two lines throught the origin

Answer:

D Watch Video Solution

21. The value of c^{2} for which the lines joining the origin to the points of intersection of the line $y=\sqrt{3} x+c$ and the circle $x^{2}+y^{2}=2$ are perpendicular to each other is
A. 1
B. 0
C. -2
D. 2

Answer:

D Watch Video Solution

22. If pairs of opposite sides of a quadrilateral are $x^{2}-7 x+6=0$ and $y^{2}-14 y+40=0$ then equations of its diagonals are
(D) Watch Video Solution
