©゙’doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KALYANI CHEMISTRY (ENGLISH)

SAMPLE PAPER 2016

Part I Question 1 Fill In The Blank

1. (Henry's aldol condensation, absence, do not, ohm, Raoult's, increases, common ion effect, easily, three, solubility product, ohm ${ }^{-1}$, two, four, $o h m^{-1} \mathrm{~cm}^{2}$, Cannizzaro, $o h \mathrm{~m}^{-1} \mathrm{~cm}^{-1}$, zero, decreases, presence)

Ideal solutions obey________ and they and form azeotropic mixtures.
2. (Henry's aldol condensation, absence, do not, ohm, Raoult's, increases, common ion effect, easily, three, solubility product, ohm ${ }^{-1}$, two, four, $o h \mathrm{~m}^{-1} \mathrm{~cm}^{2}$, Cannizzaro, $o h \mathrm{~m}^{-1} \mathrm{~cm}^{-1}$, zero, decreases, presence)

Benzaldehyde undergoes \qquad reaction due to \qquad of α hydrogen atom.

D Watch Video Solution

3. (Increases, decreases, positive, efficient, 68, non-efficient, no α-hydrogen, negative, Rosenmund's, greater, Cannizzaro, 74, commonion effect, lesser, buffer action, diamagnetic, paramagnetic)

Solubility of silver chloride \qquad in the presence of sodium chloride because of \qquad .

- Watch Video Solution

4. (Henry's aldol condensation, absence, do not, ohm, Raoult's, increases, common ion effect, easily, three, solubility product, ohm ${ }^{-1}$, two, four, ohm ${ }^{-1} \mathrm{~cm}^{2}$, Cannizzaro, $o h \mathrm{~m}^{-1} \mathrm{~cm}^{-1}$,
zero, decreases, presence)

The unit of conductance is \qquad and that of specific conductance is \qquad

D Watch Video Solution

5. (Henry's aldol condensation, absence, do not, ohm, Raoult's, increases, common ion effect, easily, three, solubility product,
$o h m^{-1}$, two, four, $o h \mathrm{~m}^{-1} \mathrm{~cm}^{2}$, Cannizzaro, $o h \mathrm{~m}^{-1} \mathrm{~cm}^{-1}$, zero, decreases, presence)

When the concentration of a reactant of first order reaction is doubled, the rate becomes \qquad times, but for \qquad order reaction, the rate remains same.

D Watch Video Solution

Part I Question 1

1. Electrochemical equivalent is the amount of substance which gets deposited from its solution on passing electrical charge equal to :
A. 96,500 coulomb
B. 1 coulomb
C. 60 Coulomb
D. 965 coulomb

Answer: B

- Watch Video Solution

2. The complex ion $\left[N i(C N)_{4}\right]^{2-}$ is :
A. Square planar and diamagnetic
B. Tetrahedral and paramagnetic
C. Square planar and paramagnetic
D. Tetradedral and diamagnetic

Answer: A

3. Wohler's synthesis is used for the preparation of :
A. Glycine
B. Amino acids
C. Urea
D. Proteins

Answer:

- Watch Video Solution

4. When SO_{2} gas is passed through acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution, the colour of the solution changes to
A. Red
B. Black
C. Orange
D. Green

Answer: D

D Watch Video Solution

5. In the equation $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Cl}_{2} \xrightarrow[-\mathrm{HCl}]{\mathrm{RedP}} A$, the compound A is :
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
B. $\mathrm{ClCH}_{2} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{Cl}$
D. $\mathrm{CH}_{3} \mathrm{COCl}$

Answer: B

- Watch Video Solution

Part I Question 1 Answer The Following Questions

1. The unit of rate and rate constant are same for a

- Watch Video Solution

2. What is the pH of a solution whose hydroxylion concentration is $10^{-2} M ?^{* *}$
3. Calculate the number of coulombs required to deposit 5.4 g of Al when the electrode reaction is :
$A l^{3+}+3 e^{-} \rightarrow A l$ [Atomic weight of $\left.\mathrm{Al}=27 \mathrm{~g} / \mathrm{mol}\right]$
(D) Watch Video Solution
4. Write the reaction to prepare acetaldehyde from hydrogen gas and an acid chloride.

D Watch Video Solution

5. The edge length of unit cell of a body-centred cubic (bcc) crystal is 352 pm . Calculate the radius of the atom.

Part I Question 1 Match The Following

1.

(i) Weak electrolyte** (a) pH of a solution**
(ii) Colour in crystals
(b) Iodoform
(iii) Acetone
(c) Tollen's reagent
(iv) Sorensen**
(d) Ostwald dilution law**
$(v) \quad$ Ammonical silver nitrate (e) F-centre

(D) Watch Video Solution

Part li Section A Question 2 Answer Any Two Questions

1. A 10% aque us solution of cane sugar (mol wt. 342) is isotonic with 1.754% aqueous solution of urea. Find the molecular mass of urea.

\bullet Watch Video Solution

2. The molecular weight of an organic compound is 58 g mol^{-1}. What will be the boiling point of a solution containing 48 g of the solute in 1200 g of water?

- Watch Video Solution

3. What will be the value of van't Hoff factor (i) of benzoic acid if it dimerises in aqueous solution ? How will the experimental molecular weight vary as compared to the normal molecular weight?
4. Determine the pH value of 0.001 M acetic acid solution if it is 2% ionised at this concentration. How can the degree of dissociation of this acetic acid solution be increased?

- Watch Video Solution

5. The solubility product of PbCl_{2} at 298 K is 1.7×10^{-5}.

Calculate the solubility of PbCl_{2} in $g L^{-1}$ at 298 K

(D) Watch Video Solution

6. Graphite is anisotropic with respect to conduction of electric current. Explain.

Part li Section A Question 3

1. In a body-centred and face-centred arrangement of atoms of an element, what will be the number of atoms present in respective unit cells. Justify your answer with calculation.

- Watch Video Solution

2. A compound $A B$ has a cubic structure and molecular mass 99. Its density is $3.4 \mathrm{~g} \mathrm{~cm}^{-3}$. What is the length of the edge of the unit cell ?
3. For the reaction :
$2 N O_{(g)} \Leftrightarrow N_{2(g)}+O_{2(g)}, \Delta H=-$ heat $^{* *}$
$K_{e}=2.5 \times 10^{2}$ at 298 K
What will happen to the concentration of N_{2} if:
(1) Temperature is decreased to 273 K .
(2) Pressure is reduced.

(D) Watch Video Solution

4. In a first order reaction, 10% of the reactant is consumed in

25 minutes. Calculate :
(1) The half-life period of the reaction.
(2) The time required for completing 87.5% of the reaction.
5. Water acts as Bronsted acid as well as a Bronsted base. Give one example each to illustrate this statement.

(Watch Video Solution

Part li Section A Question 4

1. Consider the following cell reaction at 298 K :
$2 \mathrm{Ag}^{+}+\mathrm{Cd} \rightarrow 2 \mathrm{Ag}+\mathrm{Cd}^{2+}$
The standard reduction potentials $\left(E^{\circ}\right)$ for $A g^{+} / A g$ and $C d^{2+} / C d$ are 0.80 V and -0.40 V respectively :
(1) Write the cell representation.
(2) What will be the emf of the cell if the concentration of $C d^{2+}$ is 0.1 M and that of Ag^{+}is 0.2 M ?
(3) Will the cell work spontaneously for the condition given in
(2) above?

(D) Watch Video Solution

2. What are buffer solutions and how are they prepared?

Explain the buffer action of an acidic buffer solution. Derive Henderson's equation for an acidic buffer.

(D) Watch Video Solution

3. Explain the following :

When NaCl is added to AgNO_{3} solution, a white precipitate is formed.
4. Give reasons for the following

An aqueous solution of the salt ammonium chloride is acidic in nature while an aqueous solution of sodium chloride is neutral.

(D) Watch Video Solution

5. A $0.05 \mathrm{M} \mathrm{NH} \mathrm{N}_{4} \mathrm{OH}$ solution offers the resistance of 50 ohm to a conductivity cell at 298 K . If the cell constant is $0.50 \mathrm{~cm}^{-1}$ and molar conductance of $\mathrm{NH}_{4} \mathrm{OH}$ at infinite dilution is 471.4ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, calculate :

Specific conductance

D Watch Video Solution

6. A $0.05 \mathrm{M} \mathrm{NH} \mathrm{N}_{4} \mathrm{OH}$ solution offers the resistance of 50 ohm to a conductivity cell at 298 K . If the cell constant is $0.50 \mathrm{~cm}^{-1}$ and molar conductance of $\mathrm{NH}_{4} \mathrm{OH}$ at infinite dilution is 471.4ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, calculate :

Molar conductance

- Watch Video Solution

7. A 0.05 M NH 44 solution offers the resistance of 50 ohm to a conductivity cell at 298 K . If the cell constant is $0.50 \mathrm{~cm}^{-1}$ and molar conductance of $\mathrm{NH}_{4} \mathrm{OH}$ at infinite dilution is 471.4ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, calculate :

Degree of dissociation

Part li Section B Question 5

1. Write the IUPAC names of the following :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}\right] \mathrm{NO}_{3}$

(D) Watch Video Solution

2. Write the IUPAC names of the following :
$K\left[P t\left(N H_{3}\right) C l_{3}\right]$

- Watch Video Solution

3. What type of isomerism is exhibited by the following pairs of compounds :
$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{PtBr}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$
4. What type of isomersism is exhibited by the following pairs opf compound $\left[\mathrm{Cr}(\mathrm{SCN})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ and $\left[\mathrm{Cr}(\mathrm{NCS})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$

- Watch Video Solution

5. How does $K_{2}\left[\mathrm{PtCl}_{4}\right]$ gets ionized when dissolved in water?

Will it form precipitate when AgNO_{3} solution is added to it?
Give a reason for your answer.

(D) Watch Video Solution

1. Give balanced equations for the following reactions :

Silver nitrate is added to dilute solution of sodium thiosulphate.

D Watch Video Solution

2. Give balanced equation for the following reaction : Potassium dichromate is treated with acidified ferrous sulfate solution.

- Watch Video Solution

3. Give balanced equation for the following reaction :

Phosphorus reacts with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
4. How will you obtain pure potassium permanganate $\left(\mathrm{KMnO}_{\square}\right)$ crystals from its ore, pyrosulfite ? Give the steps involved and the reactions.

- Watch Video Solution

Part li Section B Question 7

1. Sulfur dioxide acts as an oxidising agent as well as a reducing agent. Give one reaction each to show its oxidising nature and its reducing nature.
2. Explain why an aqueous solution of potassium hexacyanoferrate (II) does not give the test for ferrous ion.

(Watch Video Solution

3. What is meant by Lanthanide contraction? Write the general electronic configuration of inner transition elements.

- Watch Video Solution

Part li Section C Question 8

1. How can the following conversions be brought about :

Acetaldehyde to acetaldehyde phenyl hydrazone.
2. How can the following conversions be brought about: Benzoic acid to aniline

- Watch Video Solution

3. How can the following conversions be brought about :

Methyl chloride to acetone.

- Watch Video Solution

4. How can the following conversions be brought about:

Benzene to benzenediazonium chloride ?
5. Glycerol (propane-1, 2, 3-triol) is more viscous than ethylene glycol (ethane-1, 2-diol).

(D) Watch Video Solution

6. How can urea be detected by Biuret test?

- Watch Video Solution

7. Identify the compounds A, B and C :
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{PCl}_{5}} A \xrightarrow{\mathrm{KCN}} B \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \xrightarrow[\Delta]{\mathrm{NH}_{3}} C$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \xrightarrow{\mathrm{SOCl}_{2}} A \xrightarrow{\mathrm{NH}_{3}} B \xrightarrow{\mathrm{Br}_{2} / \mathrm{KOH}} C$

- Watch Video Solution

8. Identify the compounds A, B and C :
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\mathrm{PCl}_{5}} A \xrightarrow{\mathrm{KCN}} B \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \xrightarrow[\Delta]{\mathrm{NH}_{3}} C$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \xrightarrow{\mathrm{SOCl}_{2}} A \xrightarrow{\mathrm{NH}_{3}} B \xrightarrow{\mathrm{Br}_{2} / \mathrm{KOH}} C$

- Watch Video Solution

Part li Section C Question 9

1. Give balanced equations for the following name reactions :

Benzoin condensation

(D) Watch Video Solution

2. Give balanced equations for the following name reaction

Wurtz - Fittig reaction.

- Watch Video Solution

3. Give balanced equations for the following name reaction

Carbylamine reaction.

- Watch Video Solution

4. Give chemical test to distinguish :

Formaldehyde and acetaldehyde

D Watch Video Solution

5. Give chemical test to distinguish dimethyl ether and ethyl alcohol.
6. Write the structures of three ethers with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$.
(Watch Video Solution
7. Starting with Grignard's reagent, how will you prepare propanoic acid?

- Watch Video Solution

1. An organic compound A has the molecular formula of $C_{7} H_{6} O$. When A is treated with NaOH followed by acid hydrolysis, it gives two products, B and C . When B is oxidised, it gives A. When A and C are each treated separately with $P C l_{5}$, they give two different organic products D and E . Identify A to E .

(D) Watch Video Solution

2. An organic compound A has the molecular formula of
$C_{7} H_{6} O$. When A is treated with NaOH followed by acid hydrolysis, it gives two products, B and C. When B is oxidised, it gives A. When A and C are each treated separately with $P C l_{5}$, they give two different organic products D and E .

Give the chemical reaction when A is treated with NaOH and name the reaction.

(D) Watch Video Solution

3. What do you observe when glucose solution is heated with Tollen's reagent?

D Watch Video Solution

4. Name the monomers and the type of polymerization in each of the following polyemers:
5. Terylene 2. Polyvinyl chloride

D Watch Video Solution

5. Give balanced equations for the following reactions :

Ethylamine with nitrous acid.

- Watch Video Solution

6. Give balanced equations for the following reaction :

Diethyl ether with phosphorus pentachloride.

- Watch Video Solution

7. Give balanced equations for the following reactions :

Aniline with acetyl chloride.

