© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

CHEMISTRY

BOOKS - KALYANI CHEMISTRY (ENGLISH)

SELF ASSESSMENT PAPER -6

Questions

1. Calculate the half-life of a first order reaction from their rate constants given below:
(i) $200 s^{-1}$
(ii) $2 \mathrm{~min}^{-1}$

D View Text Solution

2. The half-life for radioactive decay of 14 C is 5730 years. An archaeological artifact containing wood had only 80% of the 14C found in a living tree. Estimate the age of the sample.

D View Text Solution

3. A reaction is second order with respect to a reactant How is the rate of reaction affected if the concentration of the reactant is
(i) doubled
(ii) reduced to half?

D View Text Solution

4. The partial pressure of ethane over a solution containing
$6.56 x 10^{-3} \mathrm{~g}$ of ethane is 1 bar . If the solution contains
$5.00 \times 10^{-2} g$ of ethane then what shall be the partial pressure of the gas?

D View Text Solution

5. Copper crystallizes into a foc lattice with edge length $3.61 \times 10^{-8} \mathrm{~cm}$. Show that the calculated density is in agreement with its measured value of $8.92 \mathrm{gcm}^{-3}$.

- View Text Solution

6. Heptane and octane form an ideal solution. At 373 K , the vapour pressures of the two liquid components are 105.2 kPa and
46.8 kPa respectively. What will be the vapour pressure of a mixture of 26.0 g of heptane and 35 g of octane?
7. Give reasons for the following:
(a) Aluminia is dissolved in cryolite for electrolysis instead electrolyzed directly. (b) Zinc oxide can be reduced to metal by heating with carbon but $\mathrm{Cr}_{2} \mathrm{O}_{3}$ cannot be reduced by heating with carbon.

- View Text Solution

8. The molar conductivity of $0.025 \mathrm{~mol} \mathrm{~L}^{-1}$ methanoic acid is $46.1 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Calculate its degree of mol. dissociation and dissociation constant.

Given

$$
\lambda^{\circ}\left(H^{+}\right)=349.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \text { and } \lambda^{\circ}\left(H \mathbb{C} O^{-}\right)=54.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}
$$

9. Conductivity of 0.00241 M acetic acid is $7.896 \times 10^{-5} \mathrm{Scm}^{-1}$.

Calculate its molar conductivity and if for acetic acid is $390.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, what is its dissociation constant?

