© 'doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - KALYANI CHEMISTRY (ENGLISH)

SOLID STATE

Worked Out Example

1. Find out the number of atoms per unit cell in a face-centred cubic structure having only single atoms at its lattice points.

-
 Watch Video Solution

2. Calculate the number of atoms in a cube based unit cell having one atom on each corner and two atoms on each body diagonal.
3. A cubic solid is made of two elements P and Q. Atoms Q are at the corners of the cube and P at the body centre. What is the formula of the compound?

Watch Video Solution

4. In a cubic type unit cell, A atoms are at one half faces, while B atoms are at the corners of the cube. Calculate the formula of the compound.

- Watch Video Solution

5. A solid is made up of two elements A and B. Atoms A occupy all the tetrahedral sites while atoms B are in ccp arrangement. Derive
the formula of the compound.

Watch Video Solution

6. Ferric oxide crystallizes in a hexagonal close packed array of oxide ions with two out of every three octahedral holes occupied by ferric ions. Derive the formula of the ferric oxide.

- Watch Video Solution

7. In a cubic type unit cell, atoms of A are at centre and corners of the cube. Atoms of B are at one half faces of the cube. What is the simplest formula of the compound?

D Watch Video Solution

8. A unit cell consists of a cube in which there are A atoms at the corners and B atoms at the face centres and A atoms are missing from two corners in each unit cell. What is the simplest formula of the compound?

D Watch Video Solution

9. Potassium crystallizes in a body centred cubic lattice. Calculate the number of unit cells in 1 g potassium. Atomic mass of potassium=39 .

D Watch Video Solution

10. Xenon is crystallized in the fcc lattice and the edge of unit length is 620 pm . What is the nearest neighbour distance and radius of xenon atom?
11. Aluminium crystallizes in an fcc structure. Atomic radius of the metal is 125 pm .

What is the length of the edge of the unit cell ?

D Watch Video Solution

12. Aluminium crystallizes in an fcc structure. Atomic radius of the metal is 125 pm .

How many such unit cells are there in $1 m^{3}$ of aluminium?

D Watch Video Solution

13. $B r^{-}$ions form close packed structure. If the radius of $B r^{-}$ion is 195 p , calculate the radius of the cation that just fits in the
tetrahedral hole. Can a cation A^{+}having a radius of 82 pm be slipped into the octahedral hole of the crystal $A^{+} B r^{-}$?

Watch Video Solution

14. Tungsten crystallizes in a body centred cubic unit cell. If the edge of the unit cell is 316.5 pm , what is the radius of the tungsten atom?

- Watch Video Solution

15. Predict the structure of MgO crystal and coordination number of its cation in which the cation and anion radii are equal to 65 pm and 140 pm respectively.
16. A solid AB has NaCl structure. If the radius of cation A^{+}is 160 pm , calculate the maximum possible value of radius of the anion B^{-}?

- Watch Video Solution

17. If NaCl is doped with $10^{-3} \mathrm{~mol} \% \mathrm{SrCl}_{2}$, what is the concentration of cation vacancies?

D Watch Video Solution

18. Analysis shows that nickel oxide has formula $N i_{0.98} O_{1.0}$. What fractions of the nickel exist as $N i^{2+}$ and $N i^{3+}$ ions ?
19. Calculate the density of silver which crystallizes in face- centred cubic form. The distance between nearest metal atoms is 287 pm (Molar mass of $\mathrm{Ag}=107.87 \mathrm{gmol}^{-1}, N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$).

- Watch Video Solution

Worked Out Example Type li Calculation Of Edge Length Interionic Distances And Volume Of Unit Cell From Density

1. Niobium crystallizes in body centred cubic structure. If its density is $8.55 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the atomic radius of niobium. (Atomic mass of $\mathrm{Nb}=93 \mathrm{u}, N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$)
2. Silver metal crystallizes with a face centred cubic lattice. The length of the unit cell is found to be $4.077 \times 10^{-8} \mathrm{~cm}$. Calculate atomic radius and density of silver. (Atomic mass of $\mathrm{Ag}=108 \mathrm{u}$, $N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$)

D Watch Video Solution

3. Lithium metal has a body centred cubic structure. Its density is $0.53 \mathrm{~g} \mathrm{~cm}^{-3}$ and its molar mass is $6.94 \mathrm{~g} \mathrm{~mol}^{-1}$. Calculate the volume of a unit cell of lithium metal.

(D) Watch Video Solution

4. What is the distance between Na^{+}and Cl^{-}ions in NaCl crystal
if its density is $2.165 \mathrm{~g} \mathrm{~cm}{ }^{-3} ? \mathrm{NaCl}$ crystallizes in fcc lattice.

- Watch Video Solution

Worked Out Example Type lii Calculation Of Avogadro S Number

1. Sodium chloride crystallizes in face-centred cubic (f.c.c.) structure.

Its density is $2.165 \mathrm{~g} \mathrm{~cm}^{-3}$. If the distance between Na^{+}and its nearest Cl^{-}ions is 281 pm , find out the Avogadro's number ($\mathrm{Na}=23$ $\left.\mathrm{g} \mathrm{mol}^{-}, C l=35.5 \mathrm{gmol}^{-}\right)$.

1. An element crystallizes into structure which may be described by a cube type of unit cell having one atom on each corner of the cube and two atoms on one of its diagonals. If the volume of this unit cell is $24 \times 10^{-24} \mathrm{~cm}^{3}$ and density of the element is $7.2 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the number of atoms present in 200 g of the element.

D Watch Video Solution

2. Anelement has a body-centred cubic (bec) structure with cell edge of 288 pm . The density of the element is $7.2 \mathrm{~g} / \mathrm{cm}^{3}$. How many atoms are present in 208 g of the element ?
3. Sodium crystallizes in the cubic lattice and the edge of the unit cell is 430 pm. Calculate the number of atoms in a unit cell. (Atomic mass of $\mathrm{Na}=23.0$ density $=0.9623 \mathrm{~g} \mathrm{~cm}{ }^{-3}$, $\left.N_{A}=6.023 \times 10^{23} \mathrm{~mol}^{-1}\right)$.

D Watch Video Solution

2. An element with molar mass $27 \mathrm{~g} \mathrm{~mol}^{-1}$ forms a cubic unit cell with edge length $4.05 \times 10^{-8} \mathrm{~cm}$. If its density is $2.7 \mathrm{~g} \mathrm{~cm}^{-3}$, what is the nature of the cubic unit cell?

- Watch Video Solution

3. The density of chromium metal is 7.2 g cm . . If the unit cell has edge length of 289 pm , determine the type of unit cell. Also, calculate the radius of an atom of chromium. (Atomic mass of chromium = 52 a.m.u.)

D Watch Video Solution

Intext Questions

1. What are the two factors which decide the physical state of a substance?

D Watch Video Solution

2. Why solids have definite shape and volume ?

3. Why are solids hard and rigid ?

Watch Video Solution

4. Why is glass regarded as an amorphous solid ?

D Watch Video Solution

5. Classify each of the following solids as molecular, ionic, network (covalent), metallic or amorphous :
(i) I_{2} (ii) Tetraphosphorus decaoxide $\left(P_{4} O_{10}\right)$ (iii) P_{4} (iv) S_{8} (v) Plastic (vi) Brass (vii) SiC (viii) Graphite (ix) Rb (x)Si (xi) Ammonium phosphate (xii) LiBr (xiii) Wax (xiv) Ice (xv) Solid CO_{2} (xvi) Al (xvii) Naphthalene (xviii) CsCl (rir) Sugar (xx) SiO_{2}, (xxi) Glass
6. Why the window glass panes of the old buildings are thick at the bottom?

D Watch Video Solution

7. Some glass objects from ancient civilisations look milky instead of being transparent. Explain.

- Watch Video Solution

8. Calculate the number of atoms present in the unit cell of a monoatomic element of (i) simple cubic (ii) body-centered cubic and
(iii) face-centered cubic lattices.

- Watch Video Solution

9. How many unit cells are shared by an atom on the face of a unit cell?

D Watch Video Solution

10. What is the two dimensional coordination number of a molecule in (i) square close-packed layer (ii) hexagonal close-packed layer.

D Watch Video Solution

11. Why uncharged atoms or molecules never crystallize in simple cubic lattice?

(D) Watch Video Solution

12. Noble gases and metals both have closed packed structures, yet the melting point of noble gases are exceptionally low. Why?
13. Explain why a hexagonal close-packed structure and a cubic close packed structure for a given element would be expected to have the same density?

D Watch Video Solution

14. What is the advantage of heating a germanium semiconductor with silver or gold instead of indium or boron?

D Watch Video Solution

15. Why sodium chloride on heating with sodium vapours acquires yellow colour?
16. Why cation vacancies in some crystals make them good catalysts?

D Watch Video Solution

17. Why solids with F -centres are paramagnetic?

- Watch Video Solution

18. Schottky defect lowers the density of ionic crystals while Frenkel defect does not. Why?

- Watch Video Solution

19. $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is ferrimagnetic at room temperature but becomes paramagnetic at 850K. Explain.

- Watch Video Solution

Follow Up Problems

1. Copper crystallizes in a face centred cubic lattice. Calculate the number of unit cells in 1.2 g of copper. Atomic mass of copper $=$ 63.54.

(D) Watch Video Solution

2. A unit cell consists of a cube in which there are anions Y at each corner and cations X at the centres of alternate faces of unit cell.

What is the simplest formula of the compound?

Watch Video Solution

3. In aluminium oxide, the oxide ions are arranged in hexagonal close packed (hcp) arrangement and the aluminium occupy $2 / 3$ of octahedral voids. What is the formula of oxide?

D Watch Video Solution

4. A compound is formed by two elements A and B. Atoms of the element B (as anions) are in ccp arrangement and those of the element A as cations occupy all the octahedral voids. What is the formula of the compound?
5. What is the formula of the compound formed by elements X and Y if atoms of element Y are in hcp arrangement and those of the element X occupy 2 / 3rd of tetrahedral voids?

- Watch Video Solution

6. A compound formed by elements A and B crystallizes in the cubic arrangement in which atoms A are at the corners of the cube and atoms B at the face centres. What is the formula of the compound?

D Watch Video Solution

7. An element crystallizes in face centred cubic lattice. Calculate the length of the side of the unit cell if the radius of atom is 200 pm .
8. Silver crystallizes in face-centred cubic unit cell. Each side of this unit cell has a length of 400 pm . Calculate the radius of the silver atom. (Assume the atoms touch each other on the diagonal across the face of the unit cell. That is each face atom is touching the four corner atoms).

D Watch Video Solution

9. Chromium metal crystallizes in a body centred cubic lattice. The length of the unit cell edge is found to be 287 pm . Calculate the atomic radius of chromium.

D Watch Video Solution

10. If the radius of the bromide ion is 0.182 nm , how large a cation
can fit in each of the tetrahedral holes?
11. CsCl has bec arrangement and its unit cell edge length is 400 pm .

Calculate the inter-ionic distance in CsCl .

- Watch Video Solution

12. The atomic radius of an ion which crystallizes in fcc structure is

9
$\frac{9}{7} \AA$. Calculate the lattice constant.

D Watch Video Solution

13. The radius of Na^{+}ion is 95 pm and that of Cl^{-}ion is 181 pm .

Predict the structure of $\mathrm{Na}^{+} \mathrm{Cl}^{-}$and the coordination number of cation.
14. Calculate the radius ratio $\left(r_{+} / r_{-}\right)$and coordination number of $L i^{+}$and F^{-}ion in LiF crystal structure from the following data : $r_{L i^{+}}=60 \mathrm{pm}, r_{F^{-}}=136 \mathrm{pm}$

(D) Watch Video Solution

15. A solid AB has the NaCl structure. If the radius of the cation A^{+} is 150 pm , calculate the maximum possible value of the radius of the anion B^{-}.

D Watch Video Solution

16. Analysis shows that a metal oxide has the empirical formula $M_{0.96} O_{1.00}$. Calculate the percentage of M^{2+} and M^{3+} ions in the sample.
17. If NaCl is doped with $10^{-2} \mathrm{~mol} \% \mathrm{SrCl}_{2}$, what is the concentration of cation vacancies?

D Watch Video Solution

18. Composition of sample wurtzite is $F e_{0.93} O_{1.0}$. What percentage of iron is present in the form of Fe (III) ?

D Watch Video Solution

Follow Up Problems Type 1 Calculation Of Density Of Unit Cell

1. An element crystallizes in a structure having fee unit cell of an edge 200 pm. Calculate the density if 200 g of this element contains 24×10^{23} atoms.
2. Silver forms ccp lattice and X-ray studies of its crystals show that the edge length of its unit cell is 408.6 pm. Calculate the density of silver (Atomic mass $=107.9 \mathrm{u}$).

D Watch Video Solution

Follow Up Problems Type li Calculation Of Edge Length Interionic Distances And Volume Of Unit Cell

1. An element (at. mass $=60$) having face centred cubic unit cell has a density of $6.23 \mathrm{~g} \mathrm{~cm}{ }^{-3}$. What is the edge length of the unit cell? (Avogadro's constant $=6.023 \times 10^{23} \mathrm{~mol}^{-1}$)
2. The density of aluminium (atomic mass $=27$) is $2700 \mathrm{~kg} \mathrm{~m}^{-3}$. If Al has feestructure, calculate its atomic radius.

D Watch Video Solution

3. A metal (atomic mass $=50$) has a body centred cubic crystal structure. The density of the metal is $5.96 \mathrm{~g} \mathrm{~cm}^{-3}$. Find the volume of this unit cell.

D Watch Video Solution

4. KF has NaCl structure. What is the distance between K^{+}and F^{-} in KF , if its density is $2.48 \mathrm{~g} \mathrm{~cm}^{-3}$?
5. Chromium crystallizes in a body centred cubic lattice, whose density is $7.20 \mathrm{~g} / \mathrm{cm}^{3}$. The length of the edge of unit cell is 288.4 pm. Calculate Avogadro's number.
(Atomic mass of chromium=52)

- Watch Video Solution

2. An element of atomic mass 90 occurs in fce structure with cell edge of 500 pm. Calculate the Avogadro's number if the density is $4.2 \mathrm{~g} \mathrm{~cm}^{-3}$

(D) Watch Video Solution

Follow Up Problems Type Iv Calculation Of Atomic Mass And Number Of Atoms In A Given Mass

1. X-ray diffraction studies show that copper crystallizes in an fcc unit cell with cell edge of $3.608 \times 10^{-8} \mathrm{~cm}$. In a separate experiment, copper is determined to have a density of $8.92 \mathrm{~g} / \mathrm{cm}^{3}$ calculate the atomic mass of copper.

D Watch Video Solution

2. An element occurs in bcc structure with cell edge 288 pm . Its density is $7.2 \mathrm{~g} \mathrm{~cm}{ }^{-3}$. Calculate the atomic mass of the element.

- Watch Video Solution

3. Tungsten has bcc lattice. Each edge of the unit cell is 316 pm and the density of the metal is $19.35 \mathrm{~g} \mathrm{~cm}{ }^{-3}$. How many atoms are present in 50 g of this element?
4. A body centred cubic element of density, $10.3 \mathrm{~g} \mathrm{~cm}^{-3}$ has a cell edge of 314 pm . Calculate the atomic mass of the element. ($N_{A}=6.023 \times 10^{23} \mathrm{~mol}^{-1}$)

D Watch Video Solution

Follow Up Problems Type V Determination Of The Nature Of Unit Cell And Number Of Atoms Per Unit Cells

1. The density of KBr is $2.75 \mathrm{~g} \mathrm{~cm}^{-3}$. The length of the edge of the unit cell is 654 pm . Show that KBr has a face centred cubic structure.

$$
\left(N_{A}=6.023 \times 10^{23} \mathrm{~mol}^{-} \text {at. mass : } \mathrm{K}=39, \mathrm{Br}=80\right]
$$

D Watch Video Solution

2. Determine the type of cubic lattice to which the iron crystal belongs if its unit cell has an edge length of 286 pm and the density of iron crystals is $7.86 \mathrm{~g} \mathrm{~cm}{ }^{-3}$.

D Watch Video Solution

Exercise Part I Objective Questions

1. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, 0.255-0.414, $0.414-$ 0.732 , unit cell AB AB, ABC ABC ...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

Amorphous solids are \qquad
2. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, 0.255-0.414, $0.414-$ 0.732 , unit cell $A B A B$, ABC ABC ...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

For tetrahedral coordination, the radius ratio should be.

D Watch Video Solution

3. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, 0.255-0.414, $0.414-$ 0.732 , unit cell $A B A B$, ABC ABC ...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

A crystal lattice, a built of repititive units called......

- Watch Video Solution

4. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, $0.255-0.414,0.414-$ 0.732 , unit cell $A B A B, \ldots . . A B C A B C$...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

The type of symmetry present in hcp arrangement is called......

- Watch Video Solution

5. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, $0.255-0.414,0.414-$ 0.732 , unit cell $A B A B, \ldots . . A B C A B C$...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

The electrons trapped in anion vacancies in metal excess defects are called........
6. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, 0.255-0.414, $0.414-$ 0.732 , unit cell $A B A B, \ldots$. ABC $A B C$...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

A crystal lattice, a built of repititive units called......

D Watch Video Solution

7. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, 0.255-0.414, $0.414-$ 0.732 , unit cell $A B A B, \ldots$.... $A B C A B C$...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

In square close packing pattern of spheres of identical size in one layer, the coordination number of each sphere will be.....

- Watch Video Solution

8. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, $0.255-0.414,0.414-$ 0.732 , unit cell $A B A B, \ldots . . A B C A B C . . .$,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

The available space filled by identical spheres in hcp pattern in one layer is.....

D Watch Video Solution

9. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, 0.255-0.414, $0.414-$ 0.732 , unit cell $A B A B, \ldots$.... $A B C A B C$...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

In cop arrangement of identical spheres, the pattern of the successive layers will be designated as...

- Watch Video Solution

10. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, 0.255-0.414, 0.4140.732 , unit cell $A B A B$, ABC ABC ...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

In the sodium chloride structure each $\mathrm{Na}+$ ion is surrounded by six $C l^{-}$ions nearest neighbours and $N a^{+}$ions next nearest neighbours.

D Watch Video Solution

11. Fill in the blanks by choosing the appropriate word from those given in the brackets. (isotropic, anisotropic, 0.255-0.414, $0.414-$ 0.732 , unit cell $A B A B, \ldots . . A B C A B C$...,, 52.4, 60.4, F-centres, V-centres, 4, 2, hexagonal close packing, square close packing, 6, 8 glass, plastics, lead zirconate, barium titanate)

A liquid which is permanently supercooled is frequently called a

D Watch Video Solution

12. The amorphous solid among the following is
A. Diamond
B. Graphite
C. Glass
D. Common salt.

Answer: C

13. The property not attributed to crystalline solids is
A. Isotropic
B. Sharp melting point
C. A definite and regular geometry
D. High intermolecular forces.

Answer: A

- Watch Video Solution

14. Basic crystal systems known are:
A. 7
B. 8
C. 6
D. 4

Answer: B

D Watch Video Solution

15. Systems which has/have not been correctly characterised is
A. cubic, $\mathrm{a}=\mathrm{b}=\mathrm{c}, \alpha=\beta=\gamma=90^{\circ}$
B. cubic, $\mathrm{a}=\mathrm{b}=\mathrm{c}, \alpha=\beta=\gamma \neq 90^{\circ}$
C. monoclinic , $a \neq b \neq c, \alpha=\gamma=90^{\circ} \beta \neq 90^{\circ}$
D. tetragonal, $a=b \neq c, \alpha=\beta=\gamma=90^{\circ}$.

Answer: B

16. In a sodium chloride crystal, each chloride ion is surrounded by
A. 6 sodium ions
B. 6 chloride ions
C. 8 sodium ions
D. 4 sodium ions.

Answer: A

D Watch Video Solution

17. An ionic solid is a poor conductor of electricity, because
A. the charge on the ions is unequally distributed
B. ions do not conduct electricity
C. ions are rigidly held in solid
D. none of the above.

Answer: C

D Watch Video Solution

18. The crystal having highest melting point is
A. Ionic crystal
B. Molecular crystal
C. Covalent crystal
D. Metallic crystal

Answer: C

19. The crystal very soft in nature is
A. Ionic crystal
B. Molecular crystal
C. Covalent crystal
D. Metallic crystal

Answer: C

- Watch Video Solution

20. Covalent molecules are usually held in a crystal structure by
A. dipole-dipole interactions
B. electrostatic attraction
C. hydrogen bonds
D. van der Waals' attraction.

Answer: D

- Watch Video Solution

21. Which of the following conditions favours the existence of a substance in the solid state?
A. High temperature
B. Low temperature
C. High thermal energy
D. Weak cohesive forces

Answer: B

22. Which of the following is not a characteristic of a crystalline

solid?

A. Definite and characteristic heat of fusion
B. Isotropic nature
C. A regular periodically repeated pattern of arrangement of constituent particles in the entire crystal
D. A true solid

Answer: B

- Watch Video Solution

23. Which of the following is an amorphous solid ?
A. Graphite ©
B. Quartz glass $\left(\mathrm{SiO}_{2}\right)$
C. Chrome alum
D. Silicon carbide (SiC)

Answer: B

- Watch Video Solution

24. Which of the following arrangements shows schematic alignment of magnetic moments of antiferromagnetic substances?

B. (1) (1) (b) (1) (1) (b)
c. \uparrow ($+(1+(+(+)$
D.

Answer: D
25. Which of the following is true about the value of refractive index of quartz glass?
A. Same in all directions
B. Different in different directions
C. Cannot be measured
D. Always zero

Answer: A

- Watch Video Solution

26. Which of the following statements is not true about amorphous solids ?
A. On heating they may become crystalline at certain temperature.
B. They may become crystalline on keeping for long time.
C. Amorphous solids can be moulded on heating.
D. They are anisotropic in nature.

Answer: D

D Watch Video Solution

27. The sharp melting point of crystalline solids is due to :
A. a regular arrangement of constituent particles observed over a short distance in the crystal lattice.
B. a regular arrangement of constituent particles observed over a long distance in the crystal lattice.
C. same arrangement of constituent particles in different directions.
D. different arrangement of constituent particles in different directions.

Answer: B

D Watch Video Solution

28. Iodine molecules are held in the crystals lattice by
A. London forces
B. dipole-dipole interactions
C. covalent bonds
D. coulombic forces
29. Which of the following is a network solid
A. SO_{2} (Solid)
B. I_{2}
C. Diamond
D. $\mathrm{H}_{2} \mathrm{O}$ (ice)

Answer: C

30. Which of the following solids is not an electrical conductor?
(I) $\mathrm{Mg}_{(s)}$, (II) $\mathrm{TiO}_{(s)},(\mathrm{III}) I_{2(s)}$, (IV) $\mathrm{H}_{2} \mathrm{O}_{(s)}$
A. (A) only
B. (B) only
C. (C) and (D)
D. (B), (C) and (D)

Answer: C

- Watch Video Solution

31. which of the following is not the characteristic of ionic solids?
A. Very low value of electrical conductivity in the molten state
B. Brittle nature
C. Very strong forces of interactions
D. Anisotropic nature

Answer: A

32. Graphite is a good conductor of electricity due to the presence of \qquad
A. lone pair of electrons
B. free valence electrons
C. cations
D. anions

Answer: B

- Watch Video Solution

33. Which of the following oxides behaves as conductor or insulator depending upon temperature ?
A. TiO
B. SiO_{2}
C. TiO_{3}
D. MgO

Answer: C

(D) Watch Video Solution
34. Which of the following oxides shows electrical properties like metals?
A. SiO_{2}
B. MgO
C. SO_{2} (s)
D. CrO_{2}
35. The lattice site in a pure crystal cannot be occupied by
A. molecule
B. ion
C. electron
D. atom

Answer: C

- Watch Video Solution

36. Graphite cannot be classified as
A. conducting solid
B. network solid
C. covalent solid
D. ionic solid

Answer: D

- Watch Video Solution

37. Cations are present in the interstitial sites in
A. Frenkel defect
B. Schottky defect
C. Vacancy defect
D. Metal deficiency defect

Answer: A

38. Schottky defect is observed in crystals when
A. some cations move from their lattice site to interstitial sites
B. equal number of cations and anions are missing from the lattice
C. some lattice sites are occupied by electrons
D. some impurity is present in the lattice

Answer: B

D Watch Video Solution

39. Which of the following is true about the charge acquired by p type semiconductors?
A. positive
B. neutral
C. negative
D. depends on concentration of p-type impurity

Answer: B

D Watch Video Solution

40. To get a n-type semiconductor from silicon, it should be doped with a substance with valence
A. 2
B. 1
C. 3
D. 5

Answer: D
41. The total number of tetrahedral voids in the face centred unit cell is
A. 6
B. 8
C. 10
D. 12

Answer: B

- Watch Video Solution

42. Which of the following point defects are shown by $\operatorname{AgBr}(\mathrm{s})$
crystals ?
(A) Schottky defect (B) Frenkel defect
(C) Metal excess defect (D) Metal deficiency defect.
A. (A) and (B)
B. (C) and (D)
C. (A) and (C)
D. (B) and (D)

Answer: A

- Watch Video Solution

43. In which pair most efficient packing is present ?
A. hcp and bcc
B. hcp and ccp
C. bcc and ccp
D. bcc and simple cubic cell
44. The percentage of empty space in a body centred cubic arrangement is
A. 74
B. 68
C. 32
D. 26

Answer: C

D Watch Video Solution
45. Which of the following statements is not true about the
hexagonal close packing ?
A. The coordination number is 12
B. It has 74% packing efficiency
C. Tetrahedral voids of the second layer are covered by the spheres of the third layer
D. In this arrangement spheres of the fourth layer are exactly aligned with those of the first layer

Answer: D

(D) Watch Video Solution

46. In which of the following structures coordination number for cations and anions in the packed structure will be same ?
A. Cl^{-}ions form fcc lattice and Na^{+}ions occupy all octahedral voids of the unit cell
B. Ca^{2+} ions form fcc lattice and Fi^{-}ons occupy all the eight tetrahedral voids of the unit cell
C. O^{2-} ions form fcc lattice and Na^{+}ions occupy all the eight tetrahedral voids of the unit cell
D. S^{2-} ions form fcc lattice and $Z n^{2+}$ ions go into alternate tetrahedral voids of the unit cell

Answer: A::D

- Watch Video Solution

47. What is the coordination number in a square close packed structure in two dimensions?
A. 2
B. 3
C. 4
D. 6

Answer: C

- Watch Video Solution

48. Which kind of defects are introduced by doping ?
A. Dislocation defects
B. Schottky defects
C. Frenkel defects
D. Electronic defects

Answer: D
49. Silicon doped with electron-rich impurity forms
A. p-type semiconductor
B. n-type semiconductor
C. intrinsic semiconductor
D. insulator

Answer: B

D Watch Video Solution

50. Which of the following statements is not true
A. Paramagnetic substances are weakly attracted by magnetic field
B. Ferromagnetic substances cannot be magnetised permanently
C. The domains in antiferromagnetic substances are oppositely oriented with respect to each other
D. Pairing of electrons cancels their magnetic moment in the diamagnetic substances

Answer: B

D Watch Video Solution

51. Which of the following is not true about the ionic solids?
A. Bigger ions form the close packed structure.
B. Smaller ions occupy either the tetrahedral or the octahedral voids depending upon their size.
C. Occupation of all the voids is not necessary
D. The fraction of octahedral or tetrahedral voids occupied depends upon the radii of the ions occupying the voids

Answer: D

D Watch Video Solution

52. A ferromagnetic substance becomes the permanent magnet when it is placed in the magnetic field because
A. all the domains get oriented in the direction of magnetic field
B. all the domains get oriented in the direction opposite to the direction of magnetic field
C. domains get oriented randomly
D. domains are not affected by magnetic field
53. The correct order of the packing efficiency in different types of unit cells is
A. fcc $<$ bcc $<$ simple cubic
B. fcc $>$ bcc $>$ simple cubic
C. fcc $<$ bcc $>$ simple cubic
D. bcc $<$ fcc $>$ simple cubic

Answer: B

D Watch Video Solution

54. Which of the following defects is also known as dislocation defect?
A. Frenkel defect
B. Schottky defect
C. Non-stoichiometric defect
D. Simple interstitial defect

Answer: A

D Watch Video Solution

55. In the cubic close packing, the unit cell has
A. 4 tetrahedral voids each of which is shared by four adjacent unit cells
B. 4 tetrahedral voids within the unit cell
C. 8 tetrahedral voids cach of which is shared by four adjacent
D. 8 tetrahedral voids within the unit cells

Answer: D

- Watch Video Solution

56. The edge lengths of the unit cells in terms of the radius of spheres constituting fcc, bcc and simple cubic unit cell are respectively
A. $2 \sqrt{2} r, \frac{4 r}{\sqrt{3}}, 2 r$
B. $\frac{4 r}{\sqrt{3}}, 2 \sqrt{2} r, 2 r$
C. $2 r, 2 \sqrt{2} r, \frac{4 r}{\sqrt{3}}$
D. $2 r, \frac{4 r}{\sqrt{3}}, 2 \sqrt{2} r$

Answer: A

57. Which of the following represents correct order of conductivity in solids?
A. $K_{\text {metals }} \gg K_{\text {insulators }}<K_{\text {semiconductors }}$
B. $K_{\text {metals }} \ll K_{\text {insulators }}<K_{\text {semiconductors }}$
C. $K_{\text {metals }}=K_{\text {semiconductors }}>K_{\text {insulators }}=$ zero
D. $K_{\text {metals }}<K_{\text {insulators }}>K_{\text {semiconductors }} \neq$ zero

Answer: A

(D) Watch Video Solution

58. Correct the following statement by changing the underlined part of the sentence.

In a hexagonal closest packing of identical spheres in two layers,
one above the other, the coordination number of each sphere will be 12 .

- Watch Video Solution

59. Correct the following statement by changing the underlined part of the sentence.

In bcc arrangement, the space filled by identical spheres is $\underline{60.4 \%}$.

- Watch Video Solution

60. Correct the following statement by changing the underlined part of the sentence.

If R is the radius of spheres forming closest packing arrangement, then radius r of the tetrahedral void will be $\underline{0.732 R}$.
61. Correct the following statement by changing the underlined part of the sentence.
In a close packed lattice, the number of tetrahedral sites formed will be equal to that of the number of spheres

D Watch Video Solution

62. Correct the following statement by changing the underlined part of the sentence.

Amorphous solids have sharp melting points.

(D) Watch Video Solution

63. Correct the following statement by changing the underlined part of the sentence.

Graphite is an amorphous solid.

D Watch Video Solution

64. Correct the following statement by changing the underlined part of the sentence.

Three spheres of the first layer and three of the second layer enclose a site at the centre in a closest packing arrangement, the site is called tetrahedral site.

- Watch Video Solution

65. Correct the following statement by changing the underlined part of the sentence.

W(tungsten) crystallises in fcc structure If the edge length is 316.5 pm.
66. Correct the following statement by changing the underlined part of the sentence.

If R is the radius of the spheres forming closest packing arrangement, then radius r of the octahedral void will be 0.225 R .

D Watch Video Solution

67. Correct the following statement by changing the underlined part of the sentence.

Non-stoichiometric NaCl is pink.
68. Match the following :
(i) lonic solid
(a) loc
(ii) Metallic solid
(b) Graphite
(iii) Covalent solid
(c) I_{2}
(iv) Non-polar molecular solid
(d) Ou
(v) Hydrogen bonded
(e) NuCl molecular solid

- Watch Video Solution

69. Match the following :

Compound
(i) NaCl
(ii) MnO
(iii) CCCl_{3}
(iv) COO_{2}
(v) $\mathrm{MgFe}_{2} \mathrm{O}_{4}$

Magnetic property
(a) Ferrimagnetic
(b) Paramagnetic
(c) Ferromagnetic
(d) Diamagnetic
(e) Antiferromagntic

D Watch Video Solution

1. Define space lattice.

D Watch Video Solution

2. Define unit cell.

Watch Video Solution

3. Define void.

- Watch Video Solution

4. Which of the following lattices has the highest packing efficiency
(i) simple cubic (ii) body-centred cubic and (iii) hexagonal close-

packed lattice?

Watch Video Solution

5. Name the type of structure possessed by unit cell of CsCl

- Watch Video Solution

6. A compound $A B_{2}$ possesses the $C a F_{2}$ type crystal structure. Write the coordination number of A^{2+} and B^{-}ions in its crystals.

D Watch Video Solution

7. What is the number of atoms in a unit cell of a face-centred cubic crystal ?
8. How many octahedral voids are present in 1 mole of a compound having cubic close packed structure ?

- Watch Video Solution

9. What is the efficiency of packing in case of a metal crystal for
(i) simple cubic (ii) body-centred cubic (iii) face-centred cubic (with the assumptions that atoms are touching each other)

- Watch Video Solution

10. What is the coordination number of octahedral voids?
11. What is the coordination number of
(i) sodium in sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$?
(ii) oxide ion in sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$?
(iii) calcium in calcium fluoride $\left(\mathrm{CaF}_{2}\right)$?
(iv) zinc in zinc blende (ZnS)?

- Watch Video Solution

12. What is the non-stoichiometry defect in the crystals ?

D Watch Video Solution

13. Why does Frenkel defect not change the density of AgCl crystals?

- Watch Video Solution

1. Do you agree with the statement that in hep and ccp structures, there is no difference in the arrangement of atoms? Explain.

- Watch Video Solution

2. Will hcp or ccp for the given element gives the same density? Explain.

- Watch Video Solution

3. What do you mean by the term coordination number? What is the coordination of each sphere in hcp strucutre
4. What do you mean by the term coordination number? What is the coordination of each sphere in ccp structures

D Watch Video Solution

5. What do you mean by the term coordination number? What is the coordination of each sphere in bcc packed structure?

- Watch Video Solution

6. When atoms are placed at the corners of all 12 edges of a cube in a unit cell, how many atoms are present per unit cell? Also name this unit cell.

- Watch Video Solution

7. Write the name of two important kinds of holes normally encountered in a closed packed structure. How many such holes are present per sphere in a close packed arrangement?

D Watch Video Solution

8. Mention three differences between crystalline and amorphous solids.

D Watch Video Solution

9. How does amorphous silica differs from quartz?
10. Explain with the help of diagram, the structural difference between three types of cubic crystals.

D Watch Video Solution

11. Explain the Schottky defects in stoichiometric crystals.

- Watch Video Solution

12. What are the consequences of Schottky and Frenkel defects?

- Watch Video Solution

13. What are point defects in crystals ? Describe the Schottky defects in crystals.
14. What do you understand by imperfections in ionic crystals? Name the types of imperfections which generally occur in ionic crystals.

D Watch Video Solution

15. What are the types of lattice imperfection found in crystals?

D Watch Video Solution

16. The radius of an octahedral void is ' r ' and the radius of an atom is ' R ' when these are in close packing. Derive the relation between the two.
17. If the radius of a tetrahedral void is 'r' and radius of atom in close packing is ' R ', derive the relation between r and R.

D Watch Video Solution

18. What is radius ratio ? What is its significance in case of ionic crystals?

(D) Watch Video Solution

19. Briefly describe the radius ratio rules.

- Watch Video Solution

20. Explain briefly the superconductivity.
21. Explain each of the following with a suitable example: Paramagnetism .

- Watch Video Solution

22. Explain each of the following with a suitable example:

Piezoelectric effect.

D Watch Video Solution

23. Explain the nature of the crystal defect produced when NaCl is doped with AlCl_{3} assuming AlCl_{3} to be an ionic compound.

- Watch Video Solution

24. Prove that the actual volume occupied by a bcc arrangement is 68\% only.

- Watch Video Solution

25. How much is the empty space present in a primitive unit cell?

Also calculate the total volume occupied.

- Watch Video Solution

26. Addition of CdCl_{2} to the crystals of AgCl will produce Schottky defects but the same is not produced when NaCl crystals are added. Explain.
27. Distinguish between crystal lattice and unit cell.

D Watch Video Solution

28. Give reasons Silicon doped with phosphorus, gives an n-type semiconductor, while p-type semiconductor is obtained when silicon is doped with gallium.

- Watch Video Solution

29. Give reasons The electrical conductivity of a metal decreases with rise in temperature, while that of a semiconductor increases.
30. Account for the Silicon is an insulator but silicon doped with phosphorus acts as a semiconductor.

D Watch Video Solution

31. Account for the Some of the very old glass objects appear slightly milky instead of being transparent.

- Watch Video Solution

32. State the difference between Schottky and Frenkel defects.

Which of these two changes the density of the solid?
33. What are molecular crystals ? Name the forces which are holding the constituent particles in molecular crystals.

- Watch Video Solution

34. What are metallic crystals ?

Watch Video Solution
35. Describe briefly the structure of copper metal.

- Watch Video Solution

36. Draw a neat diagram for NaCl structure.

- Watch Video Solution

37. Discuss the structure of diamond.

D Watch Video Solution

Exercise Part li Descriptive Questions Long Answer Questions

1. Briefly explain the packing of the constituent particles in a crystal.

- Watch Video Solution

2. Derive an expression for the density of a cubic crystal whose edge is 'a' pm and contains z atoms per unit cell. The atomic mass of substance may be taken as M.
3. Show that the density of a cubic crystal is given by the expression:
$d=\frac{Z M}{a^{3} N_{A}}$
where Z is the number of atoms/molecules/ions present per unit cell, M is molecular weight, N_{A} is Avogadro's number and a^{3} is the volume of unit cell.

D Watch Video Solution

4. How Schottky and Frenkel defects occur in ionic crystals? How does the density of a crystal gets affected by the presence of these defects?

(D) Watch Video Solution

5. How will you distinguish between ferromagnets, antiferromagnets and ferrimagnets with the help of electron spins ?
6. Discuss briefly the point defects in ionic crystals.

- Watch Video Solution

7. Discuss briefly the following property of solid :

Magnetic properties

Watch Video Solution
8. Discuss briefly the following property of solid :

Electrical properties

- Watch Video Solution

9. Discuss briefly the following property of solid :

Dielectric properties.

- Watch Video Solution

10. Classify the crystals on the basis of nature of bonds existing between the constituent particles forming the crystal.

D Watch Video Solution

11. What are ionic crystals ? Discuss the crystal structure of sodium chloride.

- Watch Video Solution

12. Explain why ionic solids are quite hard and rigid.
13. Explain why ionic solids have high melting and boiling points.

- Watch Video Solution

14. Explain why ionic solids do not conduct electricity but are good conductors in molten state.

D Watch Video Solution

15. Explain why ionic solids are more soluble in polar solvents.

-
 Watch Video Solution

16. Explain why solids have high density.
17. Explain why ionic solids are highly brittle.

D Watch Video Solution

18. What are atomic solids ? Discuss the structures of diamond and graphite.

Watch Video Solution

19. Explain why the covalent solids have high melting and boiling points.
20. Explain why the covalent solids are hard.

D Watch Video Solution

21. Explain why the covalent solids are bad conductors of electricity.

- Watch Video Solution

22. Explain why the covalent solids are usually soluble in non-polar solvents but are insoluble in polar solvents.

- Watch Video Solution

23. How will you account for the following:

Diamond is extremely hard and has high melting point.
24. How will you account for the following:

Diamond is a non-conductor of electricity.

- Watch Video Solution

25. How will you account for the following:

Diamond has high density.

D Watch Video Solution

26. How will you account for the following:

Graphite is soft and is used as a solid lubricant.
27. How will you account for the following:

Graphite is a good conductor of electricity.

D Watch Video Solution

28. Mention three differences between crystalline and amorphous solids.

- Watch Video Solution

29. For diamond, state the element present at the lattice sites, the number of nearest neighbours for each atom and the type of unit cell.
30. For sodium chloride crystal, state: the type of unit cell.

D Watch Video Solution

31. For sodium chloride crystal, state:
the nature of forces holding the particles together.

- Watch Video Solution

32. For sodium chloride crystal, state:
the number of nearest neighbours around each sodium ion.
33. For sodium chloride crystal, state:
the geometry of the sodium ions which are arranged around a chloride ion.

(D) Watch Video Solution

34. Graphite is anisotropic to electrical conduction. Discuss.

- Watch Video Solution

35. Diamond is hard and a bad conductor of electricity while graphite is soft and a good conductor of electricity. Explain. State the hybridization of carbon in both substances.
36. Describe the unit cell of sodium chloride with a neat diagram stating.

Type of unit cell

D Watch Video Solution

37. Describe the unit cell of sodium chloride with a neat diagram stating.

Type of unit cell
(Watch Video Solution
38. Describe the unit cell of sodium chloride with a neat diagram
stating.

Number of nearest neighbours around sodium and chloride ions.

Isc Examination Questions Part I Objective Question

1. Fill in the blanks choosing appropriate words given in brackets :
(Sodium chloride, Caesium chloride, copper, diamond, graphite, ions, atoms, close, $74 \%, 68 \%$.

Crystals of and \qquad have face centred cubic lattices.

D Watch Video Solution

2. Fill in the blanks choosing appropriate words given in brackets :
(Sodium chloride, Caesium chloride, copper, diamond, graphite, ions, atoms, close, $74 \%, 68 \%$.

The crystal of diamond is made of while that of calcium chloride is made of \qquad
3. Fill in the blanks choosing appropriate words given in brackets :
(Sodium chloride, Caesium chloride, copper, diamond, graphite, ions, atoms, close, $74 \%, 68 \%$.

The crystal of diamond is made up while that of sodium chloride is made up of \qquad

- Watch Video Solution

4. Fill in the blanks choosing appropriate words given in brackets :
(Sodium chloride, Caesium chloride, copper, diamond, graphite, ions, atoms, close, $74 \%, 68 \%$.

Both cop and hcp are packings and occupy about \% of the available space.

- Watch Video Solution

5. Match the following :

Compound
(i) NaCl
(ii) MnO
(ii) MnO
(iii) CrCl_{3}

Magnetic property
(a) Ferrimagnetic
(b) Paramagnetic
(c) Ferromagnetic
(d) Diamagnetic
(e) Antiferromagntic

-
 Watch Video Solution

Isc Examination Questions Part I Objective Question Complete The Following Statements By Selecting The Correct Alternative From The Choices Given

1. Copper has the face centred cubic structure. The coordination number of each ion is:
a) 4
b) 12
c) 14
d) 8
A. 4
B. 12
C. 14
D. 8

Answer: B

(Watch Video Solution

Isc Examination Questions Part I Objective Question Correct The Following Statement

1. Graphite has a two dimensional sheet-like structure in which each carbon atom is $s p^{3}$ hybridized.

Isc Examination Questions Part I Descriptive Question

1. State the main characteristics of an ionic and a network type of crystal citing a suitable example for each.

Watch Video Solution

2. Name the crystal structure of copper metal.

-
 Watch Video Solution

3. What is the coordination number of copper in its crystalline state
4. How many sodium ions and chloride ions are present in a unit cell of sodium chloride?

- Watch Video Solution

5. What is the coordination number of sodium and chloride ions in sodium chloride crystals?

- Watch Video Solution

6. For diamond, state the element present at the lattice sites, the number of nearest neighbours for each atom and the type of cell. State the hybridization of the carbon atom in diamond.
7. In a body-centred and face-centred arrangement of atoms of an element, what will be the number of atoms present in respective unit cells ?

(D) Watch Video Solution

8. Explain why graphite is soft and can be used as a lubricant.

- Watch Video Solution

9. Compare the crystals of copper and diamond giving one similarity and one difference.

- Watch Video Solution

10. Define piezoelectricity and give one use of piezoelectric crystals.
11. What are semiconductors ? What is the effect of increasing temperature on the conductivity of a semiconductor?

- Watch Video Solution

12. For a crystal of diamond, state :

The hybridization of the carbon atom.

D Watch Video Solution

13. For a crystal of diamond, state :

The coordination number of each carbon atom.

- Watch Video Solution

14. For a crystal of diamond, state :

The type of lattice in which it crystallizes.

(D) Watch Video Solution

15. For a crystal of diamond, state :

The number of carbon atoms present per unit cell.

D Watch Video Solution

16. What is Schottky defect in a solid ?

- Watch Video Solution

17. An ionic compound is made up of A cations and B anions. if A cations are present at the alternate corners and B anion is present
on the body of the diagonal, what is the formula of the ionic compound ?

Watch Video Solution

18. Define Frenkel defect in solid crystal.

- Watch Video Solution

19. Explain giving reasons why ionic solids conduct electricity in molten state, but not in solid state.

D Watch Video Solution

20. For a crystal of diamond, state :

The number of carbon atoms present per unit cell.
21. For a crystal of diamond, state :

The type of lattice in which it crystallizes.

D Watch Video Solution

22. In a crystal of diamond :

How many carbon atoms surround each carbon atom

- Watch Video Solution

23. For a crystal of diamond, state :

The type of lattice in which it crystallizes.
24. Describe briefly the structure of copper metal.

D Watch Video Solution

25. Why sodium chloride on heating with sodium vapours acquires yellow colour?

Watch Video Solution

26. Describe the unit cell of sodium chloride with a neat diagram stating.

Type of unit cell
27. What is the coordination number of sodium and chloride ions in sodium chloride crystals?

D Watch Video Solution

28. How many sodium ions and chloride ions are present in a unit cell of sodium chloride?

- Watch Video Solution

29. For a crystal of sodium chloride, state :

The structural arrangement of the sodium chloride crystal.

- Watch Video Solution

30. Graphite is anisotropic with respect to conduction of electric current. Explain.

D Watch Video Solution

Isc Examination Questions Part I Numerical Problems

1. Lead sulfide has fcc structure. The edge length of the unit cell of PbS crystal is 500 pm What is its density ?

(D) Watch Video Solution

2. A compound $A B$ has a cubic structure and molecular mass 99 . Its density is $3 \cdot 4 \mathrm{gcm}^{-3}$. What is the length of the edge of the unit cell?
3. A bcc element (atomic mass 65) has cell edge of 420 pm. Calculate its density in gcm^{-3}.

- Watch Video Solution

4. Chromium metal crystallizes with a body-centred cubic lattice. The edge length of the unit cell is found to be 287 pm. Calculate the atomic radius. What would be the density of chromium in $\mathrm{g} \mathrm{cm}^{-3}$? (atomic mass of $\mathrm{Cr}=52.99$)

- Watch Video Solution

5. The edge length of unit cell of a body-centred cubic (bcc) crystal is

352 pm . Calculate the radius of the atom.
6. In a body-centred and face-centred arrangement of atoms of an element, what will be the number of atoms present in respective unit cells. Justify your answer with calculation.

