©゙ doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KALYANI CHEMISTRY (ENGLISH)

THE SOLID STATE

Multiple Choice Questions

1. In a crystal, the atoms are located at the position of:
A. Maximum potential energy
B. Minimum potential energy
C. Zero Potential energy
D. Infinite potential energy

Answer: B

- View Text Solution

2. The crystal showing Frenkel defect is:

B.

Answer: A

- View Text Solution

3. In a face centered cubic lattice, atom (A) occupies
the corner positions and atom (B) occupies the face centre positions. If one atom of (B) is missing from one of the face centered points, the formula of the compound is :
A. $A_{2} B_{5}$
B. $A_{2} B_{3}$
C. $A B_{2}$
D. $A_{2} B$

Answer: A

- View Text Solution

4. Copper has the face centred cubic structure. The coordination number of each ion is:
A. 4
B. 12
C. 14
D. 8

Answer: B

D View Text Solution

5. Schottky defect in crystal is observed when :
A. An ion leaves its normal site and occupies the interstitial site.
B. Equal number of cations and anions are missing from the lattice
C. Unequal number of cations and anions are missing from the lattice.
D. Density of the crystal is increased.

Answer: B

- View Text Solution

6. Crystalline solids are anisotropic in nature. What is the meaning of anisotropic in the given statement?
A. A regular pattern of arrangement of particles which repeats itself periodically over the entire crystal.
B. Different values of some of physical properties are shown when measured along different directions in the same crystals.
C. An irregular arrangement of particles over the entire crystal.
D. Same values of some of physical properties are
shown when measured along different directions in the same crystals.

Answer: B

- View Text Solution

7. Piezoelectric crystals are used in
A. Radio
B. T.V.
C. Record player
D. Refrigerator

Answer: C

- View Text Solution

8. Cubic close packing arrangement is also known as :
A. Hexagonal close packing

B. Face centered cubic

C. Body centered cubic
D. None of these

Answer: B

- View Text Solution

9. Which of the following is an example of paramagnetic solid?
A. NaCl
B. KF
C. TiO_{2}
D. CuO

Answer: D

- View Text Solution

10. Crystals show colour due to the presence of:
A. F-centres
B. Y-centres
C. Defects
D. None of these

Answer: A
11. Which one of the following is non-crystalline or amorphous?
A. Diamond
B. Graphite
C. Glass
D. Common Salt

Answer: C

12. In NaCl structure, $N a^{+}$ions occupies:
A. All octahedral and tetrahedral sites are occupied
B. Only octahedral sites are occupied
C. Only tetrahedral sites are occupied
D. Neither octahedral nor tetrahedral sites are occupied

Answer: B

- View Text Solution

13. Edge length of unit cell of chromium metal is 287 pm with bcc arrangement. The atomic radius is of the
A. 287 pm
B. 574 pm
C. 124.27 pm
D. 143.5 pm

Answer: C

- View Text Solution

14. The density of a metal which crystallises in bcc lattice with unit cell edge length 300 pm and molar mass $50 \mathrm{gmol}^{-1}$ will be:
A. $10 \mathrm{gcm}^{-3}$
B. $14.2 \mathrm{gcm}^{-3}$
C. $6.15 \mathrm{gcm}^{-3}$
D. $9.32 \mathrm{gcm}^{-3}$

Answer: C

- View Text Solution

15. What is the effect of Frenkel defect on the density of ionic solids?
A. The density of the crystal increases
B. The density of the crystal decreases
C. The density of the crystal remains unchanged
D. There is no relationship between density of a crystal and defect present in it

Answer: C

- View Text Solution

16. To get n-type of semiconductor, germanium should be doped with:
A. Gallium
B. Arsenic
C. Aluminium
D. Boron

Answer: B

- View Text Solution

17. p-type semi-conductors are formed when Si or Ge are doped with:
A. Group 14 elements
B. Group 15 elements
C. Group 13 elements
D. Group 18 elements

Answer: C

- View Text Solution

18. Which of the following statement is not true about amorphous solids ?
A. On heating they may become crystalline at certain temperature.
B. They may become crystalline on keeping for long
time
C. Amorphous solids can be moulded by heating.
D. They are anisotropic in nature.

Answer: D

- View Text Solution

19. Which of the following arrangements shows schematic alignment of magnetic moments of anti-
ferromagnetic substances?

A. $\uparrow(\uparrow \uparrow \uparrow \uparrow(1$

B. (1)(1)(1)(1)(1)(1)

c. $\uparrow(1+\uparrow(1+1$
D. $1(1+1(1)(1+1)$

Answer: D
20. The relationship between atomic radius (r) and the edge length 'a' of a body centred cubic unit cell is:
A. $r=\frac{a}{2}$
B. $r=\sqrt{\frac{a}{2}}$
C. $r=\frac{\sqrt{3}}{4} a$
D. $r=\frac{3 a}{2}$

Answer: C

21. Na and Mg crystallise in bcc and foc structures respectively. The value of Z (number of atoms) for their crystals is:
A. 8 and 14
B. 2 and 4
C. 14 and 8
D. 6 and 4

Answer: B
22. Which type of defect has the presence of cations in the interstitial sites?
A. Schottky defect
B. Vacancy defect
C. Frenkel defect
D. Metal deficiency defect

Answer: C

- View Text Solution

23. The vacant space in body centred cubic lattice unit cell is:
A. 0.32
B. 0.26
C. 0.48
D. 0.68

Answer: A

D View Text Solution

Multiple Choice Questions Formula Based Questions

1. A compound formed by elements A and B has a cubic structure in which A atoms are at the corners of cube and B atoms are at the face centres. The formula of the compound will be:
A. $A_{2} B_{4}$
B. $A B_{3}$
C. $A B_{5}$
D. $A_{2} B_{6}$

Answer: B
2. A solid is made up of two elements X and Y. Atoms of
Y are in cop arrangement while atoms of X occupy all
the tetrahedral sites. The formula of the compound will be:
A. $X_{2} Y_{4}$
B. $X Y_{3}$
C. $X_{3} Y$
D. $X_{2} Y$

Answer: D

3. An ionic compound is made up of A cations and B anions. If A cations are present at the alternate corners
and B anion is present at the diagonal, the formula of
the ionic compound will be:
A. $A_{2} B_{4}$
B. $A B_{3}$
C. $A B_{2}$
D. $A_{2} B$

Answer: C

4. An alloy of gold (Au) and cadmium (Cd) crystallises with a cubic structure in which gold atoms occupy the corners and cadmium atoms fit into the face centres. What is the formula of this alloy?

- View Text Solution

5. A solid with cubic crystal is made of two elements P and Q. Atoms of Q are at the corners of the cube and P
at the body-centre. The formula of the compound will be:
A. $P Q_{4}$
B. $P Q$

C. $P Q_{2}$

D. $P Q_{3}$

Answer: B

- View Text Solution

Multiple Choice Questions Fill In The Blanks

1. Glass is an example of........solid. The coordination number of atoms in a body-centred cubic structure is
A. Amorphous, 8
B. Crystalline, 4
C. Stoichiometric, 8
D. Amorphous, 4

Answer: A

- View Text Solution

2. Of the three cubic lattices the one that has the largest amount of empty space is theCrystals of and have face centered cubic lattices
A. Body centered cubic, $\mathrm{CsCl}, \mathrm{NaCl}$,
B. Closed cubic, $\mathrm{KCl}, \mathrm{NaCl}$
C. Simple cubic, $\mathrm{CSCI}, \mathrm{NaCl}$
D. Face centered cubic, $\mathrm{KBr}, \mathrm{NaCl}$

Answer: C

- View Text Solution

3. In rock-salt structure percent of the octahedral voids are occupied by cations. In bcc arrangement of atoms percent of the available space is occupied by atoms.
A. 68,72
B. 100,68
C. 100,78
D. 100,89

Answer: B

D View Text Solution

4. An atom at the corner of a unit cell makes
contribution to a particular unit cell. If the radius ratio
r^{+} / r^{-}is 0-325, the cation would most probably be present in a/an void.
A. 1/4, Octahedral
B. 2/8, Square Planar

C. 1/6, Tetrahedral

D. $1 / 8$, Tetrahedral

Answer: D

D View Text Solution

5. When the anionic sites of a crystal are occupied by unpaired electrons, the ionic sites are called........... In diamond inter-particle forces are
A. F-centres, covalent bonds
B. F-centres, ionic bonds
C. Cationic, ionic bonds

D. Anionic, covalent bonds

Answer: A

- View Text Solution

6. is obtained when silicon is doped with boron............. is produced when AgCl is doped with $C d C l 2$.
A. n-type semiconductor, frenkel defect
B. p-type semiconductor, schottky defect
C. p-type semiconductor, impurity defect
D. n-type semiconductor, schottky defect

Answer: C

- View Text Solution

7. observed in ionic crystals which large
difference in the size of ions. The substances that are strongly attracted by a magnetic field are called \qquad
A. Frenkel defect, ferromagnetic substances
B. Impurity defect, anti-ferromagnetic substances
C. Frenkel defect, paramagnetic substances
D. Schottky defect, paramagnetic substances
8. The ability of certain materials to generate an electrical potential when they are heated or cooled is called as The materials or substances which resist or don't allow the current to flow through them are called as
A. Piezolectricity, conductors
B. Pyroelectricity, conductors
C. Piezolectricity, semi-conductors
D. Pyroelectricity, insulators
9. A form of magnetism in which the magnetic moments of neighbouring atoms are arranged antiparallel is called as In anti-fluoride structure, cations are present in \qquad voids
A. Dimagnetism, octahedral
B. Anti-ferromagnetism, tetrahedral
C. Paramagnetism, octahedral
D. Paramagnetism, tetrahedral

Answer: B
10. In cop arrangement of atoms percent of the available space remains vacant. In hcp arrangement of spheres, the coordination number is \qquad
A. 26,8
B. 26,12
C. 26,10
D. 36,8

Answer: C

Multiple Choice Questions Match The Following

1. Match the items of column A to those given in column B.
(\#\#OSW_GRU_MCQ_ISC_XII_SM1_CHE_C01_EO1_039_Q01.png" width="80\%">
A. 1-(q), 2-(p), 3-(t), 4-(r), 5-(s), 6-(v), 7-(u)
B. 1-(p), 2-(q), 3-(s), 4-(r), 5-(t), 6-(u), 7-(v)
C. 1-(v), 2-(s), 3-(u), 4-(p), 5-(r), 6-(q), 7-(t)
D. 1-(r), 2-(u), 3-(t), 4-(q), 5-(v), 6-(s), 7-(p)

- View Text Solution

Multiple Choice Questions Numerical Based Questions

1. A compound $A B$ has a simple cubic structure and has molecular mass 99. Its density is $3.4 \mathrm{gcm}^{-3}$ What will be the edge of the unit cell ?
A. $3.6 \times 10^{-8} \mathrm{~cm}$
B. $4.2 \times 10^{-6} \mathrm{~cm}$
C. $3.8 \times 10^{-8} \mathrm{~cm}$
D. $4.6 \times 10^{-6} \mathrm{~cm}$
2. An element has atomic weight $93 \mathrm{~g} \mathrm{~mol}^{-1}$ and density $11.5 \mathrm{~g} \mathrm{~cm}{ }^{-3}$. It the edge length of its unit cell is 300 pm , identify the type of unit cell.
A. 4
B. 1
C. 2
D. 5

Answer: C
3. An element with density $2.8 \mathrm{~g} \mathrm{~cm}{ }^{-3}$ forms a fee unit cell with edge length $4 \times 10^{-8} \mathrm{~cm}$. Calculate the molar mass of the element.
A. $42 \mathrm{gmol}^{-1}$
B. $27 \mathrm{gmol}^{-1}$
C. $36 \mathrm{gmol}^{-1}$
D. $28 \mathrm{gmol}^{-1}$

Answer: C

- View Text Solution

4. An element occurs in bcc structure. It has a cell edge length of 250 pm . Calculate the molar mass if its density is $8.0 \mathrm{~g} \mathrm{~cm}{ }^{-3}$. Also calculate the radius of an atom of this element.
A. 109.25 pm
B. 108.27 pm
C. 208.24 pm
D. 108.25 pm

Answer: D

5. A bcc element (atomic mass 65) has a cell edge of 420 pm . Calculate its density in $\mathrm{g} / \mathrm{cm}^{3}$
A. $2.25 \mathrm{gcm}^{-3}$
B. $2.97 \mathrm{gcm}^{-3}$
C. $2.84 \mathrm{gcm}^{-3}$
D. $2.91 \mathrm{gcm}^{-3}$

Answer: D

- View Text Solution

6. Aluminium crystallises in a cubic close-packed structure. Radius of the atom in the metal is 125 pm .

What is the length of the side of the unit cell?
A. $354 \mathrm{pm}, 2.254 \times 10^{22}$ unit cells
B. $254 \mathrm{pm}, 3.254 \times 10^{22}$ unit cells
C. $454 \mathrm{pm}, 4.254 \times 10^{22}$ unit cells
D. $654 \mathrm{pm}, 5.254 \times 10^{22}$ unit cells

Answer: A

- View Text Solution

7. Aluminium crystallises in a cubic close-packed structure. Radius of the atom in the metal is 125 pm .

How many unit cells are there in 1 cm of aluminium?
A. $354 \mathrm{pm}, 2.254 \times 10^{22}$ unit cells
B. $254 \mathrm{pm}, 3.254 \times 10^{22}$ unit cells
C. $454 \mathrm{pm}, 4.254 \times 10^{22}$ unit cells
D. $654 \mathrm{pm}, 5.254 \times 10^{22}$ unit cells

Answer: B

- View Text Solution

8. An element A crystallizes in foc structure, 208 g of it has 4.2832×10^{24} atoms. Calculate the edge length of the unit cell if density of A is $7.2 \mathrm{gcm}^{-3}$
A. $2 \times 10^{-8} \mathrm{~cm}$
B. $4.3 \times 10^{-8} \mathrm{~cm}$
C. $5.2 \times 10^{-8} \mathrm{~cm}$
D. $3 \times 10^{-8} \mathrm{~cm}$

Answer: D

- View Text Solution

9. Calculate the efficiency of packing in case of metal crystal for simple cubic (with the assumption that atoms are touching each other.
A. 0.524
B. 0.624
C. 0.544
D. 0.724

Answer: A

D View Text Solution

10. An element crystallizes in a structure having fee unit cell of an edge 200 pm . Calculate the density if 200 g of this element contains 24×10^{23} atoms.
A. $42.66 \mathrm{~g} / \mathrm{cm}^{3}$
B. $41.66 \mathrm{~g} / \mathrm{cm}^{3}$
C. $43.66 \mathrm{~g} / \mathrm{cm}^{3}$
D. $44.66 \mathrm{~g} / \mathrm{cm}^{3}$

Answer: B

D View Text Solution

11. Calculate the packing efficiency of bcc structure.
A. 0.88
B. 0.78
C. 0.68
D. 0.58

Answer: C
12. Gold has cubic crystal whose unit cell has an edge length of 407.9 pm . Density of gold is $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$.

Atomic weight of gold is $197 \mathrm{~g} \mathrm{~mol}^{-1}$.
The number of atoms (Z) in a unit cell of gold is :
A. 1
B. 2
C. 3
D. 4

Answer: D
13. Gold has cubic crystal whose unit cell has an edge length of 407.9 pm . Density of gold is $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$.

Atomic weight of gold is $197 \mathrm{~g} \mathrm{~mol}^{-1}$.
The type of crystal structure of gold is :
A. Simple cubic unit cell
B. Body centred cubic unit cell
C. Face centred cubic unit cell
D. Side centred cubic unit cell

Answer: C
14. A metal has face centred cubic lattice. The edge length of the unit cell is 404 pm . The density of the metal is $2.72 \mathrm{~g} / \mathrm{cm}^{3}$

The molar mass of the metal is :
A. $20 \mathrm{gmol}^{-1}$
B. $27 \mathrm{gmol}^{-1}$
C. $30 \mathrm{gmol}^{-1}$
D. $40 \mathrm{gmol}^{-1}$

Answer: B

1. Examine the given defected crystal

A^{+}	B^{-}	A^{+}	B^{-}	A^{+}
B^{-}	O	B^{-}	A^{+}	B^{-}
A^{+}	B^{-}	A^{+}	O	A^{+}
B^{-}	A^{+}	B^{-}	A^{+}	B^{-}

Answer the following questions:
What type of stoichiometric defect is shown in the
crystal ?
A. Schottky defect, decreases, NaCl and KCl etc
B. Frenkel defect, increases, As and Si etc
C. Schottky defect, increases, As and Bi etc

D. Frenkel defect, decreases, $\mathrm{NaCl}, \mathrm{KCl}$ etc

Answer: A

- View Text Solution

2. Examine the given defected crystal
A^{+}
B^{-}
A^{+}
B^{-}
A^{+}
B^{-}
O
B^{-}
A^{+}
B^{-}
A^{+}
B-
A^{+}
0
A $^{+}$
B^{-}
A $^{+}$
B^{-}
A^{+}
B^{-}

Answer the following questions:
How is the density of crystal affected by this defect?
A. Schottky defect, decreases, NaCl and KCl etc
B. Frenkel defect, increases, As and Si etc
C. Schottky defect, increases, As and Bi etc
D. Frenkel defect, decreases, $\mathrm{NaCl}, \mathrm{KCl}$ etc

Answer: A

- View Text Solution

3. Examine the given defected crystal
A $^{+}$
B^{-}
A^{+}
B^{-}
A^{+}
B^{-}
O
B^{-}
A^{+}
B^{-}
A^{+}
B
A^{+}
0
A $^{+}$
B^{-}
A^{+}
B^{-}
A^{+}
B^{-}

Answer the following questions:
What type of ionic substance show such defect?
A. Schottky defect, decreases, NaCl and KCl etc
B. Frenkel defect, increases, As and Si etc
C. Schottky defect, increases, As and Bi etc
D. Frenkel defect, decreases, $\mathrm{NaCl}, \mathrm{KCl}$ etc

Answer: A
4. Examine the given defective crystal :
X^{+}

Y^{-}

Y^{-}

Answer the following questions:
Is the above defect stoichiometric or non stoichiometric?
A. Stoichiometric, F-centre, KBr
B. Non-stoichiometric, holes, NaCl
C. Non-stoichiometric, F-centre, LiCl

D. Stoichiometric, holes, KCl

Answer: C

- View Text Solution

5. Examine the given defective crystal :

Y^{-}

Answer the following questions:
Write the term used for the electron occupied site.s
A. Stoichiometric, F-centre, KBr
B. Non-stoichiometric, holes, NaCl
C. Non-stoichiometric, F-centre, LiCl
D. Stoichiometric, holes, KCl

Answer: C

6. Examine the given defective crystal :
x^{+}
Y^{-}

Y^{-}
 +1+

X^{+}

Y^{-}

Answer the following questions:
Give an example of the compound which shows this type of defect.
A. Stoichiometric, F-centre, KBr
B. Non-stoichiometric, holes, NaCl
C. Non-stoichiometric, F-centre, LiCl

D. Stoichiometric, holes, KCl

Answer: C

- View Text Solution

Multiple Choice Questions Assertion Reason Based Questions

1. Assertion: Quartz glass is crystalline solid and quartz is an amorphous solid.

Reason: Quartz glass has long range order.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: D

- View Text Solution

2. Assertion: Graphite is a good conductor of electricity however diamond belongs to the category of insulators.

Reason: Graphite is soft in nature on the other hand diamond is very hard and brittle.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: B

- View Text Solution

3. Assertion: In crystalline solids, the value of resistance is different in different directions.

Reason: Crystalline solids are isotropic in nature.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: C

D View Text Solution

4. Assertion: Glass panes fixed to windows or panes of old buildings are found to be slightly thicker at the bottom.

Reason: Amorphous solids have a tendency to flow.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason
is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: A

5. Assertion: Face-centred cubic cell has four atoms per unit cell.

Reason: In fcc unit, there are eight atoms at the corner and six atoms at face centers.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason
is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: A

- View Text Solution

6. Assertion: CsCl has body centred cubic arrangement.

Reason: CsCl has one $\mathrm{C} s^{+}$ion and eight Cl^{-}ions in its unit cell.
A. If both assertion and reason are true and reason
is the correct explanation of assertion.
B. If both assertion and reason are true, but reason
is not the correct explanation of assertion.
C. If assertion is true, but reason is false.

D. If both assertion and reason are false

Answer: C

- View Text Solution

7. Assertion: In crystal lattice, the size of the tetrahedral hole is large than an octahedral hole.

Reason: The cations occupy more space than anions in
crystal packing.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: D

- View Text Solution

8. Assertion: On heating ferromagnetic or ferrimagnetic substances, they become paramagnetic. Reason: The electrons change their spin on heating.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: A

- View Text Solution

9. Assertion: The total number of atoms present in a simple cubic unit cell is one.

Reason: Simple cubic unit cell has atoms at its corners, each of which is shared between eight adjacent unit cells.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: A

10. Assertion: The packing efficiency is maximum for the fcc structure.

Reason: The coordination number is 12 in fcc structures.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true, but reason is not the correct explanation of assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false

Answer: B

